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Quasi-Monte Carlo for Highly Structured Generalised
Response Models

BY F.Y. KUO, W.T.M. DUNSMUIR, I.H. SLOAN, M.P. WAND
AND R.S. WOMERSLEY

School of Mathematics and Statistics, University of New South Wales,
Sydney 2052, Australia

2 November 2006

ABSTRACT

Highly structured generalised response models, such as generalised linear mixed
models and generalised linear models for time series regression, have become an indis-
pensable vehicle for data analysis and inference in many areas of application. However,
their use in practice is hindered by high-dimensional intractable integrals. Quasi-Monte
Carlo (QMC) is a dynamic research area in the general problem of high-dimensional nu-
merical integration, although its potential for statistical applications is yet to be fully
explored. We survey recent research in QMC, particularly lattice rules, and report on its
application to highly structured generalised response models. New challenges for QMC
are identified and new methodologies are developed. QMC methods are seen to provide
significant improvements compared with ordinary Monte Carlo methods.

Some keywords: Generalised Linear Mixed Models; High-dimensional Integration; Lat-
tice Rules; Longitudinal Data Analysis; Maximum Likelihood; Quasi-Monte Carlo; Semi-
parametric Regression; Serial Dependence; Time Series Regression.

1 Introduction

Messy data sets with a generalised response variable abound in many contemporary ar-
eas of application. By “generalised response” we mean a response variable that is far
from normally distributed, such as a binary, count or heavily skewed variable. This
departure from normality is the motivation for the development of generalised linear
models and extensions. An example of such data is given in Figure 1 and involves lon-
gitudinal measurements on 275 Indonesian children from Diggle, Liang & Zeger (1995).
The response variable is an indicator of respiratory infection. Of interest are the effects
of covariates such as vitamin A nourishment. However, regression-type analyses needs
to account for correlation among repeated measures on the same child as well a possibly
non-linear age effect.
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Figure 1: Respiratory infection indicator (0=absent, 1=present) versus age in years for a cohort
of Indonesian children. Repeated measures on same child are connected by lines. Each panel
corresponds to a different combination of three covariates: vitamin A nourishment, gender and
height for age. The respiratory infection indicator has been jittered to enhance visualisation.

A useful vehicle for analysis of data such as these is the set of generalised linear mixed
models. A random intercept can take care of the within subject correlation. Provided the
design matrices are permitted to be of general form then penalised spline basis functions
can take care of non-linear covariate effects (e.g. Zhao, Staudenmayer, Coull & Wand,
2006). However, the likelihood involves intractable integrals of dimension as high as
the number of basis functions, usually in the range 10–35. Model fitting and inference
requires strategies for dealing with such integrals. The most common approaches involve
Laplace approximation (e.g. Breslow & Clayton, 1993) and Markov Chain Monte Carlo
(e.g. Clayton, 1996; Zhao et al., 2006).

In time series regression with generalised response the integration problems are even
worse. Davis, Dunsmuir & Wang (2000) discuss several applications of Poisson regres-
sion in time series with serial dependence arising in public health: a series of T = 168
monthly polio counts and a series of T = 1465 daily asthma counts. The dimension of
the integral, d = T , corresponds to the length of the time series — potentially in the hun-
dreds or thousands. This is of the same order as a 360-dimensional integration problem
in mathematical finance that was successfully handled by Paskov & Traub (1995). This
phenomenal breakthrough was due to integration technology that has become known as
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quasi-Monte Carlo or QMC.
Like the Monte Carlo method, QMC methods approximate high-dimensional inte-

grals by averages of function values sampled at a number of points. However, instead
of generating the sample points randomly, the QMC integration points are chosen deter-
ministically in a clever way to be “better than random”: they are designed to achieve a
faster rate of convergence, thus are more effective and more efficient in practice.

In this article we investigate the extent to which contemporary QMC can handle high-
dimensional integrals arising in highly structured generalised response models. A nec-
essary step before applying any QMC algorithm is to transform the integrand into the
unit cube. It is seen that this transformation, which relates closely to the technique of im-
portance sampling, plays a crucial role in QMC integration. Extensive numerical studies
show that QMC does have something to offer, in comparison to ordinary Monte Carlo
integration, for highly structured generalised response models.

Pan & Thompson (1998, 2004, 2006) and Al-Eid & Pan (2005) describe the use of QMC
for generalised linear mixed model fitting. They used the “square root sequence” ad-
vocated by Fang & Wang (1994) rather than the recent ”lattice” methods studied here.
Hickernell, Lemieux & Owen (2005) contains a recent survey of QMC for a statistical
readership.

Section 2 provides a summary of highly structured generalised response models and
the integration challenges that the log-likelihood presents. Section 3 surveys QMC from
its elements up to its most recent developments. QMC approaches to the aforementioned
log-likelihood integrals are described in Section 4. Numerical experiments are docu-
mented in Section 5. A discussion of the optimisation procedure is given in Section 6.
Section 7 contains a brief summary and Section 8 contains additional technical details.

2 Highly Structured Generalised Response Models

Let y be a generalised response vector for which a model in terms of several predictors
is sought. The most common generalised response situations are binary y, which results
in a conditional Bernoulli likelihood structure; and y containing counts, in which case
conditional Poisson likelihood structure is often assumed. A rich class of such models is

f(y|w) = exp{y>(Xβββ + Ww)− 1>b(Xβββ + Ww) + 1>c(y)},
w i.i.d. N(0,ΣΣΣ).

(1)

Setting b(x) = log(1 + ex) and c(x) = 0 in (1) gives the Bernoulli conditional density
with conditional mean E(y|w) = logit−1(Xβββ + Ww). The Poisson conditional den-
sity with conditional mean E(y|w) = exp(Xβββ + Ww) corresponds to b(x) = ex and
c(x) = log(1/x!). The model parameters are βββ and ΣΣΣ although it is common to impose
further parametric structure on ΣΣΣ. The matrix X is a design matrix corresponding to the
effects in βββ. The matrix W could be a design matrix or simply the identity matrix of
appropriate dimension. Since there is a wide range of choices for W and ΣΣΣ we call such
models highly structured. Special cases include generalised linear mixed models (e.g. Mc-
Culloch & Searle, 2000) and generalised linear models for time series regression (e.g.
Davis, Dunsmuir & Wang, 1999). Sections 2.1 – 2.3 provide specific illustrations.
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Models of the form (1) are typically fitted by using maximum likelihood or hierarchi-
cal Bayes methodology. We will focus on the likelihood approach, although the ideas are
extendible to Bayesian approaches. The log-likelihood of (βββ,ΣΣΣ) is

`(βββ,ΣΣΣ) = log
∫

Rd

exp{y>(Xβββ + Ww)− 1>b(Xβββ + Ww)− 1
2w

>ΣΣΣ−1w}dw (2)

−1
2 log |ΣΣΣ| − d

2 log(2π) + 1>c(y)

where d is the dimension of w. However, its computation is thwarted by the intractable
integral comprising the first term. By the end of this section we will have described some
situations where the integral factorises into integrals of dimension of about 1–3; others
that require integration over dimensions in the tens; and some that require integration
over a space having the same dimension as the sample size. The second and third situa-
tions pose an obvious challenge.

A simple, and often useful, approximation to `(βββ,ΣΣΣ) arises from the Laplace method.
This involves a multivariate normal approximation to the integrand via a second order
Taylor series approximation of the exponent about its stationary point (e.g. Breslow &
Clayton, 1993). The resulting approximation is

`(βββ,ΣΣΣ) ≈ y>(Xβββ + Ww∗)− 1>b(Xβββ + Ww∗)− 1
2w

∗>ΣΣΣ−1w∗

−1
2 log |I + ΣΣΣW>diag{b′′(Xβββ + Ww∗)}W|+ 1>c(y)

where w∗ is a solution to w = ΣΣΣW>{y − b′(Xβββ + Ww)}. A commonly used further
approximation for estimation of βββ is one which assumes that the determinant term is
effectively constant as a function of βββ (Breslow & Clayton, 1993).

2.1 Generalised Linear Mixed Models

Generalised linear mixed models (GLMM) have become very popular in Applied Statis-
tics due to their handling a variety of complications arising in contemporary data analysis
and inference. A survey of 20th Century work in the area is provided by McCulloch &
Searle (2000). Recent books demonstrating the breadth of GLMM include Ruppert, Wand
& Carroll (2003) and Skrondal & Rabe-Hesketh (2004).

An important class of GLMM corresponds to (1) with w set to u, a random effects
vector. The W matrix would then correspond to the design matrix attached to u, usually
denoted by Z. Lastly, ΣΣΣ corresponds to the covariance matrix of the random effects and
is often denoted by G. In this section we will use the Z and G, rather than W and ΣΣΣ, to
conform with the GLMM literature. The GLMM version of (1) is then

f(y|u) = exp{y>(Xβββ + Zu)− 1>b(Xβββ + Zu) + 1>c(y)},
u i.i.d. N(0,G).

(3)

Distinguishing features between this model and its generalisation (1) are: the length of
the random effects vector u is typically of length much smaller than the response vector
y, and the covariance matrix G has relatively simple structure and does contain forms
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arising in time series modelling, such as Toeplitz structure. For many important GLMMs,
G is simply a diagonal matrix with only a few distinct diagonal entries.

Recently Zhao et al. (2005) examined Markov Chain Monte Carlo fitting of a hierar-
chical Bayes formulation of (3). They made a case for breaking up the linear predictor
into sub-components that handle the various covariance structures used in longitudinal
data modelling, smoothing and spatial statistics. Considered were decompositions of the
design structure such as

Xβββ + Zu = XRβββR + ZRuR + XGβββG + ZGuG = XRβββR + ZRuR + XGβββG +
L∑

`=1

ZG
`u

G
` (4)

where

XR ≡




XR
1

...
XR

m


 , ZR ≡ blockdiag

1≤i≤m

(XR
i ), ZG = [ZG

1 . . . ZG
L]

with
Cov(uR) = blockdiag

1≤i≤m

(ΣΣΣR) and Cov(uG) = blockdiag
1≤`≤L

(σ2
u`I).

The design matrices and parameter vectors with superscript “R” correspond to random
intercepts and slopes, as typically used for repeated measures of data on m groups with
sample sizes n1, . . . , nm. For 1 ≤ i ≤ m, XR

i is a ni × dR matrix for the random design
corresponding to the ith group, ΣΣΣR is an unstructured dR × dR covariance matrix. The
design matrices and parameter vectors with superscript “G” correspond to general de-
sign matrix structure. This allows, for example, the incorporation of non-linear covariate
effects via the mixed model representation of penalised splines (Wand, 2003).

In longitudinal data analysis the ZGuG component is usually absent and dR is a small
integer, typically in the range 1–3. For example, a single covariate Poisson mixed model
with random intercept:

yij i.i.d. Poisson{exp(β0 + β1xij +Ui)}, Ui i.i.d. N(0, σ2
U ), 1 ≤ j ≤ ni, 1 ≤ i ≤ m, (5)

corresponds to dR = 1 and XR
i equalling the ni × 1 vector of ones. The log-likelihood (2)

then reduces to

`(β0, β1, σ
2
U ) =

m∑

i=1

ni∑

j=1

{yij(β0 + β1xij)− log(yij !)} − m
2 log(2πσ2

U ) (6)

+
m∑

i=1

log
∫ ∞

−∞
exp




ni∑

j=1

yijUi − eβ0+β1xij+Ui − U2
i

2σ2
U


 dUi

and the remaining intractable integrals are one-dimensional. However, if (5) is extended
to the semiparametric model

yij i.i.d. Poisson{exp(β0 + β1xij + f(sij) + Ui)}
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where f(s) = β2 s +
∑K

k=1 uk(s − κk)+ is a K-knot penalised spline model for f with
uk i.i.d. N(0, σ2

u) then the log-likelihood is

`(β0, β1, β2, σ
2
U , σ

2
u)

=
m∑

i=1

ni∑

j=1

{yij(β0 + β1xij + β2sij)− log(yij !)} − m
2 log(2πσ2

U )− K
2 log(2πσ2

u)

+ log
∫

RK




m∏

i=1

∫ ∞

−∞
exp





ni∑

j=1

yijUi − eβ0+β1xij+β2sij+Ui+
PK

k=1 uk(sij−κk)+ − U2
i

2σ2
U



 dUi




× exp





m∑

i=1

ni∑

j=1

K∑

k=1

yijuk(sij − κk)+ −
K∑

k=1

u2
k

2σ2
u



 du1 · · · duK ,

The dominating intractable integral is over RK .
Starting mainly with the Laplace approximation papers: Breslow & Clayton (1993)

and Wolfinger & O’Connell (1993), there has been a great deal of research and software
development for GLMM. Chapter 10 of McCulloch & Searle (2000) surveys the earlier
literature. Zhao et al. (2006) reflects contemporary work in GLMM. The SASprocedure
PROC NLMIXED(SAS Institute, Inc., 2006) uses quadrature to evaluate low-dimensional
integrals such as those arising in (6). Markov Chain Monte Carlo packages based on
the BUGSsampling engine (BUGS Project, 2006) have been successfully used in Bayesian
GLMMs involving higher-dimensional integrals; see for example Crainiceanu, Ruppert
& Wand (2005), Gurrin, Scurrah & Hazelton (2005) and Zhao et al. (2006).

2.2 Generalised Linear Models for Longitudinal Data with Serial Dependence.

Models of this type are emerging more frequently in the longitudinal data analysis liter-
ature – for example see Diggle, Heagerty, Liang & Zeger (2002). Here

W = I, w = ZRuR + ααα

where ZR and uR represent the random effects components and ααα> = (ααα>1 , . . . , ααα
>
m) where

αααi i.i.d. N(0,ΓΓΓi), i = 1, . . . ,m

allow for serial dependence within the time ordered repeated measures on the m cases.
The covariance matrix ΓΓΓi = ΓΓΓi(λλλ) is a ni×ni Toeplitz corresponding to an assumption of
stationary serial dependence and is specified using a finite vector of parameters λλλ which
is the same for all values of i. Let

ΓΓΓ = blockdiag
1≤i≤m

(ΓΓΓi).

Computation of the log-likelihood for this model requires computation of m integrals of
the type (above) with maximum dimension d = maxi(ni). Diggle et al. (2002) discuss
computational approaches but do not present examples in which both ZRuR and ααα are
present in the model simultaneously.
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The class of models just considered may also be appropriate for the situation in which
m time series of equal length ni ≡ n are observed. For example in Bernat, Dunsmuir &
Wagenaar (2004) the impact of reduction of legal blood alcohol concentration from 0.1 to
0.08 on single vehicle night time fatalities was investigated in the United States. In that
study monthly time series of fatalities in m = 19 states each of length ni = 72 were anal-
ysed using a Poisson mixed model regression with random effects for before and after the
change in legal blood alcohol levels. In some of the states significant autocorrelation ex-
isted. Other examples that we have encountered include the analysis of monthly suicide
counts over a 30 year period in all of the states. Here ni ≡ 360 and m ≈ 50. These situa-
tions differ somewhat from the longitudinal data situation in that m is typically smaller
and the ni are typically much larger than in the longitudinal setting.

2.3 Generalised Linear Models for Time Series Regression

For this paper we will investigate the calculation of a single integral corresponding to a
single series in Section 2.2. These single time series models have been extensively stud-
ied, in their own right, in recent years. An understanding of the calculation of those
integrals required for computing the likelihood in the single series setting will also be
necessary for the multiple time series and longitudinal examples of Section 2.2. They cor-
respond to a single (m = 1 in the previous model) time series Y1, . . . , YT of observations
which, conditional on an observed sequence of vectors of regressors, {xt}, and an unob-
served stationary latent process {wt}, are observations from an exponential family model
or closely related family such as negative binomial. Throughout this paper we assume
that the latent process is the autoregression of degree p, referred to as the AR(p) model
henceforth,

wt = φ1wt−1 + · · ·+ φpwt−p + ηt

where ηt i.i.d. N(0, σ2). Here w is a d = T dimensional vector with multivariate normal
distribution specified to have mean vector 0 and covariance matrix ΣΣΣ = cov(w) with
(s, t)th element given by the autocovariance at lag |s− t| for the above AR(p) process. Let
V = ΣΣΣ−1 and denote the parameters specifying the covariances as θ = (φ1, . . . , φp, σ

2)
then the log-likelihood of the observed data is as given above with W = I. Note that the
integral required to be calculated is d-dimensional with d = T . It is not uncommon to
have the length T of the time series in the thousands for realistic applications that arise
in public health or financial econometrics.

Various simulation based methods currently available for computing the required
integral are reviewed in Davis and Rodriguez-Yam (2005). Techniques reviewed include
the various computationally intensive methods of importance sampling, Monte Carlo
EM, and Monte Carlo Newton-Raphson. Davis and Rodriguez-Yam (2005) introduce an
approximation, based on the second order Taylor series expansion, to the conditional
density of wt given the count observations yt and exploit the computationally efficient
innovations algorithm to evaluate the resulting approximate likelihood. They also use
this approximation to develop an approximate importance sampling technique which
is computationally much faster than importance sampling. Application to a stochastic
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volatility model for 946 daily Pound-Dollar exchange rates is presented to illustrate the
use of their methods beyond the exponential family setting discussed here.

3 Elements of Quasi-Monte Carlo Methods

In this section we provide a brief introduction to quasi-Monte Carlo (QMC) methods, with
a focus on recent developments in lattice rules. We start our discussion with the Monte
Carlo method, to which the QMC methods are related in a natural way.

3.1 The Monte Carlo Method and Importance Sampling

Consider an integral ∫

Rd

g(w)p(w) dw, (7)

where w = (w1, . . . , wd)> is a d-dimensional vector and p is some multivariate probability
distribution function. Integrals of the form (7) often arise from multivariate expected
values, and in many cases p is the multivariate normal density

(2π)−d/2|ΣΣΣ|−1/2 exp{−1
2(w − µµµ)>ΣΣΣ−1(w − µµµ)} (8)

with mean µµµ and covariance matrix ΣΣΣ. The integral in the log-likelihood (2) is one exam-
ple; many finance problems also have integrals of this form. The classical Monte Carlo
method approximates (7) by an average of function values of g

1
N

N∑

i=1

g(ξξξi),

where ξξξ1, . . . , ξξξN ∈ Rd are N independent random samples drawn from the distribu-
tion p. The expected error is of orderO(N−1/2) and the efficiency depends on how easy it
is to sample from the distribution p and how well p captures the features of the integrand
g(w)p(w). More precisely, the root mean square expected error is σ(g)/

√
N , where

σ2(g) :=
∫

Rd

g2(w)p(w) dw −
(∫

Rd

g(w)p(w) dw
)2

,

which we shall refer to as the variance of g.
For a more general integral ∫

Rd

f(w) dw, (9)

the integrand f may not have the obvious form of some function times a distribution, or
perhaps it has such a form but the distribution does not reflect the features of f . In these
situations it is up to the user to choose an appropriate distribution p and rewrite (9) in
the form of (7), with g(w) = f(w)/p(w). If an attempt is made to minimise σ(g) then
this technique is known as importance sampling and p is referred to as the importance sam-
pling distribution. In practice, it is convenient if the sampling distribution p is a product
of univariate probability distribution functions. For example, if p is a normal distribu-
tion (8), then a change of variable with z = A−1(w − µµµ) will do the trick, where A is
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a factorisation of ΣΣΣ = AA>. We shall assume for the remainder of this subsection that
p(w) :=

∏d
j=1 ψ(wj), where ψ is a univariate probability distribution.

Importance sampling can be thought of as a change of variables. Let Ψ : R → [0, 1]
denote the cumulative distribution function of ψ, that is, Ψ(w) =

∫ w
−∞ ψ(t) dt, and let Ψ−1

denote its inverse. Using the substitution z = Ψ(w) := (Ψ(w1), . . . ,Ψ(wd))>, the integral
(7) can be transformed into an integral over the unit cube

∫

[0,1]d
g(Ψ−1(z)) dz,

where Ψ−1(z) := (Ψ−1(z1), . . . ,Ψ−1(zd))>. The Monte Carlo method in effect approxi-
mates this integral by

1
N

N∑

i=1

g(Ψ−1(ξξξi)),

where now ξξξ1, . . . , ξξξN ∈ [0, 1]d are i.i.d. uniform random samples drawn from [0, 1]d. In
other words, the points are first drawn from a uniform distribution in [0, 1]d and then
mapped into Rd using Ψ−1. This is equivalent to the earlier discussion, where the points
are generated directly from the distribution p. For the present approach to work in prac-
tice, we must have a way to evaluate Ψ−1. Thus this approach is rarely used explicitly by
people following the Monte Carlo strategy.

Now we come to the point where quasi-Monte Carlo methods depart from the Monte
Carlo method. QMC methods are designed to improve upon the effectiveness and effi-
ciency of the Monte Carlo method. They take the same form as the Monte Carlo method
in the unit cube [0, 1]d, but instead of sampling the points randomly from a uniform dis-
tribution, the points are chosen deterministically in a clever way so that a rate of conver-
gence of orderO(N−1(logN)d) or better is achieved. Since all QMC methods are defined
in the unit cube, to apply QMC methods to a particular integral, one must first trans-
form the integral into the unit cube. From our earlier discussion, it should be clear that
importance sampling, with an appropriately chosen distribution, will give us the trans-
formation we need. For the QMC strategy to succeed it is crucial that we can evaluate
Ψ−1, either analytically or numerically.

3.2 Low-discrepancy Point Sets

Assume now that original integral in Rd has been transformed into an integral over the
unit cube [0, 1]d. We consider integrals of the form

If :=
∫

[0,1]d
f(z) dz.

Then QMC methods approximate such integrals by

QNf :=
1
N

N∑

i=1

f(ξξξi),
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where ξξξ1, . . . , ξξξN are points from the unit cube [0, 1]d chosen deterministically to be “more
uniform than random”. While the root mean square MC error is σ(f)/

√
N where σ2(f) =

If2 − (If)2, QMC error bounds typically take the form

|If −QNf | ≤ D(ξξξ1, . . . , ξξξN )V (f),

where D(ξξξ1, . . . , ξξξN ) is some discrepancy, which measures the quality (the “uniformity”)
of the points, and V (f) is a measure of the variation of f . For example, the classical
Koksma-Hlawka inequality has QMC error bounded by the so-called star discrepancy of
the point set and the variation of f in the sense of Hardy and Krause (e.g. Niederreiter,
1992). Error bounds of this form separate the dependence on the point sets from the
dependence on the integrand. In general we do not have control over the integrand, and
so we choose QMC points that make the discrepancy as small as possible. This is the
principle behind all constructions of QMC methods.

One may ask the question: if the aim is to achieve high uniformity, why not just divide
the unit interval in each coordinate direction into n − 1 equal segments and take the nd

grid points as our integration points? Clearly this is infeasible even for n = 2 if d is say
100. Another answer is that the projection of these N = nd points collapse down to just
n distinct values in each coordinate direction, and thus for a function that depends only
on a single component of z we receive only the benefit of having n points, yet have nd

costly function evaluations. More generally, one can apply a one-dimensional integration
rule such as the Simpson rule in each coordinate direction to form what is called a product
rule. However, even if the chosen one-dimensional rule has error of order O(n−r), the
error expressed in terms of N is only of order O(N−r/d). In other words, the cost (in
terms of function evaluations) for a given level of accuracy increases exponentially in
d. It is this curse of dimensionality that makes product rules useless for high dimensional
integrals.

QMC point sets with discrepancy of order O(N−1(logN)d) or better are collectively
known as low-discrepancy point sets. This includes, for example, the well known Sobol′

sequences and Niederreiter sequences. These are “sequences” because additional points
can be added at any time. Their “extensibility” in N makes them very attractive in prac-
tice: if at any stage we decide to increase the number of points in our QMC approxima-
tion, we only need to evaluate the function at the additional points. However, point sets
which are not extensible in N often have smaller discrepancies.

Digital nets and lattice rules are the two foci in recent QMC research. They represent
two different strategies for achieving high uniformly of the points in the unit cube. For
a survey of earlier works, see Niederreiter (1992) and Sloan & Joe (1994). Note that the
definition of digital nets and lattice rules do not explicitly forbid product grids. Instead
product grids are excluded by the design concepts based on minimising various forms of
discrepancy measures.

The concept behind digital nets is all about having the right number of points in vari-
ous sub-divisions of the unit cube. Figure 2(a) shows the first 64 points of a 2-dimensional
Sobol′ sequence, which is an example of a digital (0, 6, 2)-net in base 2. If we divide the
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unit square into 64 strips with width 1/64 in either direction then each strip contains ex-
actly one point (with points on the boundary counting towards the next strip). Similarly
if we divide the unit square into 64 squares, we get exactly one point in each square. In
fact as long as the unit square is divided into 64 rectangles of the same shape and size,
each rectangle will include exactly one point. The quality of a “(t,m, s)-net in base b”
rests upon its t-value: the smaller t is, the finer the sub-divisions can be, while preserving
the uniformity described above. (The ideal case above corresponds to t = 0. In a general
(t,m, s)-net in base b there are bm points in total, with bt points in each sub-division. The
dimension is typically denoted by s rather than d.) See Niederreiter (2005) for a survey
of recent works on the construction of (t,m, s)-net.

Lattice rules have a different kind of uniformity: the points of a lattice rule form
a group under the operation of addition modulo the integers. One way to visualise a
lattice point set is to think of a sheared product grid where the axes have been stretched
and rotated under certain constraints. The oldest and simplest kind of lattice rules, now
known as rank-1 lattice rules, are uniquely specified by the choice of a generating vector
ηηη = (η1, . . . , ηd), which is an integer vector having no factor in common with N . More
precisely, the lattice points are given by ξξξi = frac(iηηη/N) for i = 1, . . . , N , where frac(x)
is the vector obtained by replacing each component of the vector x by its fractional parts.
Figure 2(b) shows a “Fibonacci” lattice rule with N = 55 and ηηη = (1, 34).

Figure 2: Digital net versus lattice rule.
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(b) Fibonacci lattice
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Deterministic methods have their disadvantages. Although the error is fully deter-
ministic rather than probabilistic, in general the discrepancy bound tends to be far too
pessimistic. In other words, QMC methods lack a practical error estimate, whereas the
Monte Carlo expected error can easily be obtained by estimating the variance of the func-
tion. To overcome this problem, it is recommended that “randomised” QMC methods
should be used in practice.

“Shifting” is the simplest form of randomisation. The idea is to move all the points
in the same direction by the same amount, and if any point falls outside the unit cube
then it is “wrapped” back into the cube from the opposite side. A short description on
how to use randomly-shifted QMC methods to provide error estimation is given in the
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Appendix. Another popular but more complicated randomisation method is known as
“scrambling”. For a survey of randomisation techniques, see Hickernell & Hong (2002),
L’Ecuyer & Lemieux (2002), and the references therein. Note that shifting preserves the
lattice structure while scrambling preserves the net structure: a shifted net may no longer
remain a net while a scrambled lattice could cease to be a lattice.

Low-discrepancy sequences such as Sobol’ sequences have been widely used for many
years by practitioners across various disciplines. In particular, there have been sev-
eral documented successes for high-dimensional financial derivative calculations such as
mortgage-backed securities and option pricing, see e.g. Paskov & Traub (1995). However,
modern analysis and design of digital nets and lattice rules have so far been confined to
academic exercises. In many cases these analyses rely on artificial assumptions which are
not satisfied in real world problems. Furthermore, interdisciplinary collaborations are
needed to properly test these newly developed methods.

Our experiments in this paper will focus on the use of randomly-shifted lattice rules,
and as a comparison we consider also Sobol’ sequences which are classical examples of
digital nets. Unlike most low-discrepancy sequences obtained following some generic
schemes, the design of lattice rules requires educated tuning. This might be viewed by
some as a disadvantage but others will see it as an opportunity: we have the option and
scope to tailor the lattice rule to the integrand. Thus before we can discuss the choice of
a lattice rule, we must consider the nature of the integrand.

3.3 ANOVA Decomposition and Effective Dimension

It has been observed that the integrands in many practical problems have low effective di-
mensions. To see what this means, consider for example the simple integrand f(z1, z2, z3, z4) =
z1 + cos(z2z3) whose nominal dimension is 4. One could say that the effective dimension
is 3 because the integrand depends only on the first three variables. On the other hand,
any sensible person would treat this problem as the sum of a one-dimensional integral
and a two-dimensional integral, thus concluding that the effective dimension is only 2.

More generally, every d-dimensional function f can be decomposed as a sum of 2d

terms
f(z) =

∑

u⊆{1,...,d}
fu(zu), (10)

where zu denotes the set of variables {zj : j ∈ u}, and each term fu depends only on
the set of variables zu. This is known as the ANOVA (analysis of variance) decomposition
if we impose the condition that

∫ 1
0 fu(zu) dzj = 0 for all j ∈ u. It can be shown that the

ANOVA terms are orthogonal, i.e.
∫
[0,1]d fu(zu)fv(zv) dz = 0 for all u 6= v, and they can be

expressed recursively by fu(zu) =
∫
[0,1]d−|u| f(z) dz−u −

∑
v⊂u fv(zv), where z−u := {zj :

j /∈ u}. Moreover, we have
σ2(f) =

∑

u⊆{1,...,d}
σ2(fu), (11)

that is, the variance of f is the sum of the variances of the ANOVA terms.
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We say that fu describes the “interaction” between the variables in zu, and we refer
to the terms fu with |u| = ` collectively as the order-` terms. For some functions it may
be that only the terms involving say the first 10 variables are important; or on the other
hand it may be that all variables are equally important but the higher order interactions
are negligible compared with the lower order ones. In both cases these functions are
said to have low effective dimensions. Following the definitions in Caflisch, Morokoff &
Owen (1997) and Liu & Owen (2006),

• the truncation dimension of f is the smallest integer dT such that
∑

u⊆{1,...,dT }
σ2(fu) ≥ 0.99σ2(f);

• the superposition dimension of f is the smallest integer dS such that
∑

|u|≤dS

σ2(fu) ≥ 0.99σ2(f);

• the mean dimension of f is

dM :=
d∑

`=1


` · 1

σ2(f)

∑

|u|=`

σ2(fu)


 .

Thus the truncation dimension corresponds roughly to the number of important vari-
ables, while the superposition dimension describes the highest order of significant inter-
actions between variables. The mean dimension is the expected order of f , which has a
similar interpretation to the superposition dimension.

Note that in general it is impossible to obtain a simple expression for fu. Fortunately
there are ways to compute the effective dimensions of f without having to know the
ANOVA terms, see Wang & Fang (2003) and Liu & Owen (2006). A brief outline of the
techniques is given in the Appendix. Note, however, that these techniques require the
evaluation of some integrals involving f , and thus the problem of estimating the effective
dimensions is at least as hard as the original integration problem.

3.4 Lattice Rules, Random Shifts, and Weights

Lattice rules were traditionally used to approximate integrals with periodic integrands.
Their role for non-periodic integrands has been known only for the past half decade.
Here we give a brief discussion on how to choose a good lattice rule. See Kuo & Sloan
(2005) for a more detailed description of our methodology.

The first step in the modern analysis of lattice rules is to identify a function space
H to which the integrand f belongs. In analogy with the ANOVA decomposition, we
assume that f belongs to a weighted Sobolev space H , in which every function has the
decomposition (10) and its variance satisfies (11). The space H contains functions with
square-integrable mixed first derivatives, and the inner product of H is “weighted” fol-
lowing the notion first introduced by Sloan & Woźniakowski (1998). Without going into
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the full details, it suffices to say that we associate a weight, γu, with every set of variables
zu, which describes the level of interaction between the variables in zu. The 2d weights
γu together model the relative importance between various sets of variables. Roughly
speaking, a small γu means that the contribution of the ANOVA term fu is small com-
pared with the other ANOVA terms of f . We set γ∅ = 1 to fix the scaling. The limiting
case of γu = 0 implies that fu = 0, or in other words, there is no interaction between the
variables in zu.

To have a function space that best describes our integrand f , we must choose the
weights γu according to the dimension structure of f . This corresponds to the variance
allocation of f among its ANOVA terms. To limit our choices, we consider just the fol-
lowing settings (e.g. Sloan, Wang & Woźniakowski, 2004):

• With product weights, we assume that γu :=
∏

j∈u γ{j}, that is, the weight associated
with the set of variables zu is automatically assigned the product of the weights for
each individual variable zj in this set. This setting is useful when the truncation
dimension is low.

• With order-dependent weights, we assume that γu := Γ|u|, that is, the weight associ-
ated with the set of variables zu depends only on the cardinality of u. This setting
is useful when the superposition dimension is low but the truncation dimension is
still high.

• We can also have finite-order weights by setting γu = 0 for all |u| > q, with some fixed
number q < d. Many high-dimensional integrals in practice do appear to have a
finite order of just 2 or 3.

Once we have determined the weights for our function space H , we study the worst-
case error defined by

eN (ξξξ1, . . . , ξξξN ) := sup
‖f‖H≤1

|If −QNf |.

From this definition, we see that |If −QNf | ≤ eN (ξξξ1, . . . , ξξξn) ‖f‖H . Thus the worst-case
error can be thought of as a type of discrepancy measure. In general we do not have a
computable expression for the worst-case error, except when the function space H is a
reproducing kernel Hilbert space; this is indeed the case for the Sobolev space.

The worst-case error is then used as our search criterion in a component-by-component
algorithm (e.g. Sloan, Kuo & Joe, 2002) which constructs a good generating vector ηηη for
randomly-shifted lattice rules. In a nutshell, this is a greedy algorithm which selects the
best choice for each component of ηηη, one at a time, while holding all previously chosen
components fixed. There are many variants of this algorithm, including those which
aim for good embedded or extensible lattice rules (e.g. Cools, Kuo & Nuyens, 2006; Dick,
Pillichshammer & Waterhouse, 2006). With a clever implementation, these algorithms
can produce, in a very short computational time, good lattice rules with thousands of
dimensions and millions of points that achieve close toO(N−1) convergence. An outline
of the most basic component-by-component algorithm is given in the Appendix.
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Unfortunately, we shall see in the next section that the transformed integrands aris-
ing from the log-likelihood integrals do not belong to the weighted Sobolev spaces. This
is because we get either functions which are unbounded near the boundary of the unit
cube, or functions whose derivatives near the boundary are unbounded and not square-
integrable. In other words, the nice theory discussed above cannot strictly be applied.
(In fact, even though there are numerous empirical results showing that QMC meth-
ods work well for many finance problems, there has been no concrete theoretical justi-
fication because the transformed integrands do not lie in any of the theoretical function
space settings.) Having said that, very recently Kuo, Wasilkowski & Waterhouse (2006)
introduced a new function space setting which includes the transformed integrands in
the next section. Even though they were only able to prove a O(N−1/2) convergence
for randomly-shifted lattice rules, this is still one big step towards having an applicable
theory. Furthermore, it provides some sort of theoretical explanation for the common
observation that “QMC always performs no worse than MC”.

4 QMC for Log-likelihood Integrals

Recall from (2) that our log-likelihood is given by

`(βββ,ΣΣΣ) = log
∫

Rd

exp{F (w)}dw − 1
2 log |ΣΣΣ| − d

2 log(2π) + 1>c(y),

where
F (w) = y>(Xβββ + Ww)− 1>b(Xβββ + Ww)− 1

2w
>ΣΣΣ−1w,

with b(x) = log(1 + ex) and c(x) = 0 in the Bernoulli model, and b(x) = ex and c(x) =
log(1/x!) in the Poisson model. Assuming for the moment that the parameters βββ and ΣΣΣ
are given and fixed, we wish to approximate `(βββ,ΣΣΣ).

4.1 Laplace Approximation

As already discussed briefly in Section 2, the Laplace method approximates `(βββ,ΣΣΣ) using
a multivariate normal approximation to the integrand exp{F (w)} via a second order
Taylor series approximation of F (w) about its stationary point.

More precisely, the gradient and Hessian of F (w) are given by

∇F (w) = W>y −W>b′(Xβββ + Ww)− ΣΣΣ−1w

∇2F (w) = −W>diag(b′′(Xβββ + Ww))W − ΣΣΣ−1.

We choose w∗ and ΣΣΣ∗ such that

∇F (w∗) = 0 and ΣΣΣ∗ =
(−∇2F (w∗)

)−1
,

and we approximate F (w) by

F (w) ≈ F (w∗) +∇F (w∗)(w −w∗) + 1
2(w −w∗)>∇2F (w∗)(w −w∗)

= F (w∗)− 1
2(w −w∗)>ΣΣΣ∗−1(w −w∗).
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Thus ∫

Rd

exp{F (w)}dw ≈ (2π)d/2|ΣΣΣ∗|1/2 exp{F (w∗)},

which leads to

`(βββ,ΣΣΣ)
Laplace≈ F (w∗) + 1

2 log |ΣΣΣ∗| − 1
2 log |ΣΣΣ|+ 1>c(y).

4.2 QMC Approximation

We now approximate the integral in `(βββ,ΣΣΣ) using QMC methods. Our first step is to
transform this integral into the unit cube. As we have explained in Section 3, this is
equivalent to importance sampling for the Monte Carlo method. The transformation
plays a crucial role as it controls the feature and dimension structure of our transformed
integrand. In other words, the transformation determines the difficulty of the integration
problem over the unit cube.

The transformation process comprises two stages:

1. Translate and re-centre the mode, and rotate and re-scale the axes.

2. Map the integral into the unit cube.

The first stage helps to eliminate spiky integrands and integrands with support far away
from the origin in Rd. This can be achieved by a change of variables

v = P−1(w − µµµ),

with a suitably chosen centre µµµ and an invertible matrix P so that the components of v are
properly scaled with respect to each other. The second stage is to map every integration
variable vj from R into [0, 1] using the same cumulative distribution function, that is, we
use the substitution

z = Ψ(v) := (Ψ(v1), . . . ,Ψ(vd))>,

where Ψ is the cumulative distribution function of a univariate probability distribution
ψ. These two stages of the transformation process lead to

∫

Rd

exp{F (w)}dw = |P|
∫

Rd

exp{F (µµµ+ Pv)}dv

= |P|
∫

Rd

exp{F (µµµ+ Pv)}
d∏

j=1

1
ψ(vj)

×
d∏

j=1

ψ(vj) dv

= |P|
∫

[0,1]d
exp{F (µµµ+ PΨ−1(z))}

d∏

j=1

1
ψ(Ψ−1(zj))

dz,

where Ψ−1(z) := (Ψ−1(z1), . . . ,Ψ−1(zd))>. Hence the transformed integrand is

f(z) := |P| exp{F (µµµ+ PΨ−1(z))}
d∏

j=1

1
ψ(Ψ−1(zj))

,
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and a QMC rule with points ξξξ1, . . . , ξξξN gives the approximation

`(βββ,ΣΣΣ)
QMC≈ log

(
1
N

N∑

i=1

f(ξξξi)

)
− 1

2 log |ΣΣΣ| − d
2 log(2π) + 1>c(y).

How should we choose the pair µµµ and P? Clearly we should re-centre our integrand
based on the stationary point w∗ of F (w). On the other hand, the Laplace method pro-
vides a fairly good approximation locally around w∗, and we can think of ΣΣΣ∗ as being
chosen to match the curvature of the integrand at w∗. This motivates the choice

µµµ = w∗ and P = A∗,

where A∗ is a matrix satisfying
ΣΣΣ∗ = A∗A∗>.

An obvious choice is to take A∗ to be the Cholesky factor of ΣΣΣ∗. Alternatively, A∗ can
be obtained from spectral decomposition as (

√
λ1ννν1, . . . ,

√
λdνννd), where λ1 ≥ · · · ≥ λd

are the eigenvalues of ΣΣΣ∗ and ννν1, . . . , νννd are the corresponding unit column eigenvectors.
This second choice of decomposition is often associated with the term principal component
analysis (PCA) in the QMC community even though all the eigenvalues and eigenvectors
are used. We shall refer to this second choice of A∗ as the PCA factor of ΣΣΣ∗.

Note that we could also take P = A, with A being the Cholesky or PCA factor of
the covariance matrix ΣΣΣ from the normal distribution already present in the integrand.
However, exploratory calculations indicate that such a transformation leads to very poor
results. The bottom line is that ΣΣΣ simply does not capture the feature of the integrand
around w∗.

Having chosen µµµ and P for the first stage of the transformation process, we now
choose a probability distribution ψ for the second stage.

Transformation 1 The most intuitive choice is to take ψ to be the standard normal distri-
bution,

ψ(v) = (2π)−1/2 exp(−1
2v

2).

The transformed integrand is then

f1(z) := (2π)d/2|ΣΣΣ∗|1/2 exp{F (w∗ + A∗Ψ−1(z)) + 1
2Ψ−1(z)>Ψ−1(z)}.

Note that there is no closed form expression for Ψ−1, although computational techniques
based on rational approximation are well known.

Observe that f1 is continuous on (0, 1)d, but it could be unbounded near the bound-
aries of the unit cube. Using the definition of ΣΣΣ∗ we can write the exponent in f1 as

y>(Xβββ + Ww∗ + WA∗Ψ−1(z))− 1>b(Xβββ + Ww∗ + WA∗Ψ−1(z))

−1
2w

∗>ΣΣΣ−1w∗ −w∗>ΣΣΣ−1A∗Ψ−1(z)

+1
2(WA∗Ψ−1(z))>diag(b′′(Xβββ + Ww∗))(WA∗Ψ−1(z)).

When b(x) = log(1 + ex), the positive quadratic term in the exponent dominates. Thus f1

is unbounded at all boundaries of the cube. Consider now b(x) = ex. Then the exponent
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is a balance between negative exponential and positive quadratic terms, and it could
potentially approach ±∞. Thus in this case f1 is unbounded at some boundaries of the
cube. A more detailed analysis of the boundary behaviour for the latter case is given in
the Appendix. #

The transformation described above can lead to integrands which are unbounded at
the boundaries of the unit cube. However, unbounded integrands do not belong to the
Sobolev spaces discussed in Section 3, and therefore the existing theory on lattice rules
cannot strictly be applied. Our aim is to find an alternative transformation such that the
transformed integrand is bounded everywhere on [0, 1]d.

Transformation 2 Instead of using the normal distribution to map the integral into the
unit cube, we use the logistic distribution

ψ(v) =
ev/λ

λ(1 + ev/λ)2
.

This distribution has a bell shape, but its tails only have exponential decay. The cumula-
tive distribution function is

Ψ(v) =
ev/λ

1 + ev/λ
, with Ψ−1(z) = λ log

(
z

1−z

)
.

This inverse function is known as the logit function or the logistic map. The transformed
integrand in this case is

f2(z) := λd|ΣΣΣ∗|1/2 exp{F (w∗ + A∗Ψ−1(z))}
d∏

j=1

(e−Ψ−1(zj)/λ + 2 + eΨ
−1(zj)/λ).

As before we consider the boundary behaviour of f2. After grouping the product
term into the exponential function, the exponent is

y>
(
Xβββ + W(w∗ + A∗Ψ−1(z))

)− 1>b
(
Xβββ + W(w∗ + A∗Ψ−1(z))

)

−1
2(w∗ + A∗Ψ−1(z))>ΣΣΣ−1(w∗ + A∗Ψ−1(z)) +

d∑

j=1

log(e−Ψ−1(zj)/λ + 2 + eΨ
−1(zj)/λ).

When b(x) = log(1+ex), the negative quadratic term dominates the exponent and so f2 is
bounded everywhere on [0, 1]d. If b(x) = ex, then the exponent is dominated by negative
exponential as well as negative quadratic terms, and it could only approach−∞ and not
+∞. Thus in this case f2 is also bounded everywhere on [0, 1]d. #

It is worth noting that even though the integrands are bounded, the derivatives can
be huge. In practice it may actually be easier to handle an unbounded integrand with
weak singularities rather than bounded integrands with huge boundary derivatives.

We could also consider other probability distributions for the second stage of the
transformation. One other possible choice is to use a skewed normal distribution that
has different standard deviations for positive and negative values. Since our integrand is
skewed in some way, this transformation may prove to be advantageous.
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5 Numerical Experiments

In our experiments here we consider two simplified problems in which we assumed that
the parameters are given and fixed. The goal here is to find the best transformation to
obtain good QMC approximations of the log-likelihood integrals. In the next section we
will embed these integral calculations in an optimisation procedure to find the optimal
parameter set.

Example 1 We consider a simple parameter driven Poisson state-space model where w =
(w1, . . . , wd)> is an auto-regression of degree 1 (i.e.,wj = φwj−1+ηj with ηj i.i.d.N(0, σ2)).
Here b(x) = ex, c(x) = log(1/x!), W = I, X = 1, βββ = β, and the covariance matrix is
Toeplitz

ΣΣΣ =
σ2

1− φ2




1 φ φ2 · · · φd−2 φd−1

φ 1 φ · · · φd−3 φd−2

φ2 φ 1 · · · φd−4 φd−3

...
...

...
. . .

...
...

φd−2 φd−3 φd−4 · · · 1 φ
φd−1 φd−2 φd−3 · · · φ 1



, with |ΣΣΣ| =

σ2d

1− φ2
.

The Cholesky factor of ΣΣΣ = AAT and its inverse are known explicitly

A = σ




1√
1−φ2

0 0 · · · 0
φ√

1−φ2
1 0 · · · 0

φ2√
1−φ2

φ 1 · · · 0
...

...
...

. . .
...

φd−1√
1−φ2

φd−2 φd−3 · · · 1




and A−1 =
1
σ




√
1− φ2 0 0 · · · 0 0
−φ 1 0 · · · 0 0
0 −φ 1 · · · 0 0
...

...
...

. . .
...

0 0 0 · · · −φ 1



.

The inverse of ΣΣΣ is tridiagonal

ΣΣΣ−1 =
1
σ2




1 −φ 0 · · · 0 0
−φ 1 + φ2 −φ · · · 0 0
0 −φ 1 + φ2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 + φ2 −φ
0 0 0 · · · −φ 1



.

We have a data file containing count data y = (y1, . . . , yd)> up to dimension d = 200.
These data were simulated from the parameters β = 0.7, σ2 = 0.3 and φ = 0.5. Due to the
time-series structure, we can consider this integration problem with d taking any value
up to 200. We shall consider d = 25, 50, 100, 150, 200.

For this example we have

F (w) =
d∑

j=1

(βyj + wjyj − eβewj )− 1
2w

>ΣΣΣ−1w,

∇F (w) = y − eβew − ΣΣΣ−1w,

∇2F (w) = −diag(eβew)− ΣΣΣ−1.
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To obtain the stationary point w∗ satisfying ∇F (w∗) = 0, we use the Newton iteration

(−∇2F (w(k)))(w(k+1) −w(k)) = ∇F (w(k)),

starting at w(0) = 0. Each iteration can be solved by a Cholesky factorisation of (−∇2F (w(k)))
followed by forward and back substitutions, see the LAPACKfunction DPOTRS(Ander-
son et al., 1999). Once a satisfactory w∗ is found, the matrix ΣΣΣ∗ discussed in Section 4.1
is given by ΣΣΣ∗ =

(−∇2F (w∗)
)−1, where the inverse matrix can be obtained by making

use of the Cholesky factorisation, see the LAPACKfunction DPOTRI. #

Example 2 We consider a generalised linear mixed model which is a simple semi-parametric
regression model with Poisson response. In this example b(x) = ex, c(x) = log(1/x!),
w = u = (u1, . . . , ud)>, y = (y1, . . . , yn)> ∈ {0, 1, 2, . . .}n, and

X =




1 x11 x21

1 x12 x22
...

...
...

1 x1n x2n


 , βββ =



β0

β1

β2


 , W = Z = [(x2i − κj)+]1≤i≤n

1≤j≤d

,

where x11, . . . , x1n ∈ {0, 1}, x21, . . . , x2n ∈ (0, 1), and κ1, . . . , κd ∈ (0, 1) are fixed numbers
ranging between the maximum and minimum of x2i, known as knots. The covariance
matrix is ΣΣΣ = σ2I.

We have a simulated data set of x1, x2, y, and numbers κj , for d = 25 and n =
500. (Note that the dimension for this example is fixed.) A good starting point for the
parameters is given by β0 = 1, β1 = 0.77, β2 = 1.5, and σ2 = 51.

For this example we have

F (u) = y>(Xβββ + Zu)− 1> exp(Xβββ + Zu)− u>u/(2σ2),

∇F (u) = Z>(y − exp(Xβββ + Zu))− u/σ2,

∇2F (u) = −Z>diag(exp(Xβββ + Zu))Z− (1/σ2)I.

The stationary point u∗ and the matrix ΣΣΣ∗ can be obtained in the same way as in Exam-
ple 1. #

Following Subsection 4.2, we consider four transformations: ψ is either the standard
normal distribution or the logistic distribution with λ = 0.6, and A∗ is either the Cholesky
factor or the PCA factor of ΣΣΣ∗. For convenience we shall refer to these four transformation
methods as “Normal + PCA”, “Normal + Cholesky”, “Logistic 0.6 + PCA”, and “Logistic
0.6 + Cholesky”.

5.1 Effective Dimension Estimation

To gain some insights to the dimension structure of these transformed integrands in the
unit cube, we compute their effective dimensions. Figure 3 shows the estimated trunca-
tion dimension and mean dimension for both examples under the four transformations
described above. (More details regarding how these numbers were obtained are given in
the Appendix.)
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Figure 3: Effective dimensions of transformed integrands.

25 50 100 150 200 25

25

50

100

150

200

Nominal dimension

T
ru

nc
at

io
n 

di
m

en
si

on

Normal + PCA
Normal + Cholesky
Logistic 0.6 + PCA
Logistic 0.6 + Cholesky

Example 1

Example 2

25 50 100 150 200 25

2

4

6

8

Nominal dimension

M
ea

n 
di

m
en

si
on

Normal + PCA
Normal + Cholesky
Logistic 0.6 + PCA
Logistic 0.6 + Cholesky

Example 1

Example 2

It is important to realise that these numbers can only be used a rough guide because
the errors in these estimates can be huge. The superposition dimension estimates are the
most unreliable of all and this is why we do not present the results here. (Past experi-
ences indicate that the mean dimensions tend to be under-estimates of the superposition
dimensions.) Having said that, we do get a clear picture of the dimension structure of
these functions: the truncation dimension is essentially the nominal dimension regard-
less of the transformation method. Unlike many option pricing problems in finance, the
PCA decomposition does not help to reduce the truncation dimension for our examples
here.

On the other hands, the transformation method appears to have some small effect on
the mean dimension. Although no concrete conclusions can be drawn from these results,
the PCA decomposition generally leads to higher mean dimension than the Cholesky
decomposition does. As the nominal dimension increases, the mean dimension (and
most likely the superposition dimension too) increases rapidly, indicating that these high-
dimensional problems are truly high-dimensional. This is again contrary to many finance
problems in which the mean dimension remains around 2 as the nominal dimension
increases.

5.2 Two-dimensional Projections

We produce plots of some two-dimensional projections of these transformed integrands
to get an idea of their boundary behaviour. A number of selected plots are included in
Figures 4 and 5.
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Figure 4: Two-dimensional projections of transformed integrand obtained using (a) normal dis-
tribution and (b) logistic distribution with λ = 0.6.

(a.1) (b.1)

(a.2) (b.2)

(a.3) (b.3)
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Figure 5: Two-dimensional projections of transformed integrand obtained (c) without centring
and rescaling and (d) with centring but without rescaling.

(c) (d)

Figure 4 shows the general characteristics of these transformed integrands by means
of their two-dimensional projections. For example, the graph (a.1) corresponds to the
transformed integrand obtained by using “Normal + PCA” in Example 1 with d = 25. It
shows a function of the first and the fifth variables, with all other variables fixed at the
value 0.5. In other words, it is a two-dimensional projection of the transformed integrand
from the centre of the unit cube and parallel to the axes z1 and z5. The graph suggests
that the function goes to infinity when either variable goes to 0, but it is otherwise fairly
flat. The graphs (a.2) and (a.3) show other projections of the same transformed integrand
in different dimensions and anchored at different positions in the unit cube. In fact, for
both Examples 1 and 2, the transformations based on the standard normal distribution
lead to projections like those in (a), and the transformations based on the logistic distri-
bution lead to projections like those in (b). This is regardless of whether PCA or Cholesky
decomposition is used. These features are as we have predicted: the use of standard nor-
mal distribution can result in unbounded integrands, and the use of logistic distribution
always give bounded integrands but the derivatives near the boundary can be huge.

As a comparison, in Figure 5 we present the projections of some badly transformed
integrands: (c) shows the support of the integrand off to one corner and (d) shows a
narrow spike at the centre. They are associated with transformed integrands obtained
without centring, or with centring but without rescaling. We do not expect MC or QMC
methods to do well for these badly transformed integrands. (As it turned out, the results
were way off.) Further details about these figures are given in the Appendix.

5.3 Integral Calculation

Now we compute the integral for each transformed integrand using the Monte Carlo
method, the Sobol′ sequence, and four lattice rules constructed based on various choices
of weights. (See the Appendix for details regarding these lattice rules.) In each calcula-
tion, we use 10 random shifts of N points, N = 215 = 32768 or N = 216 = 65536, and we
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estimate the standard errors. We then repeat this process 30 times and produce a compar-
ison of the boxplots for the log10 relative integrals and log10 relative standard errors. The
results for Example 1 with d = 25, Example 2 (which has d = 25), and Example 1 with
d = 200 are presented in Figures 6, 7, and 8, respectively. Note that since the boundary
behaviour is the dominating feature of some transformed integrands, it is necessary that
we use a good random number generator with double precision (see the Appendix for
details).

More precisely, for each of the six integration rules and each of the four transformation
methods, we compute

Is,k(rule, trans) =
1
N

N∑

i=1

fs,k,i(rule, trans)

for s = 1, 2, . . . , 30 and k = 1, 2, . . . , 10, where fs,k,i denotes the transformed integrand
value at the kth random shift of the ith integration point during the sth repetition. For
each repetition s = 1, 2, . . . , 30, we compute the estimated integral and the corresponding
standard error

Īs(rule, trans) =
1
10

10∑

k=1

Is,k(rule, trans),

Es(rule, trans) =

√√√√ 1
10× 9

10∑

k=1

(
Is,k(rule, trans)− Īs(rule, trans)

)2
.

Each boxplot in the figures contains the logarithm (base 10) of a scaled version of 30
numbers, either

log10

(
Īs(rule, trans)

median1≤s≤30 Īs(MC,Normal + PCA)

)
,

or

log10

(
Es(rule, trans)

median1≤s≤30 Īs(MC,Normal + PCA)

)
.

In other words, all results have been scaled by the median of the MC estimated integral
using “Normal + PCA”. Thus the first boxplot in every figure should have its black dot
exactly at 0.

Conclusion from Figure 6

First we discuss the results in Figure 6 for Example 1 with d = 25 and N = 32768. At a
glance it is clear that QMC dramatically outperforms MC: the integral estimates for both
MC and QMC are unbiased, but the standard errors for MC are significantly larger than
those for QMC.

For three of the four transformations, the lattice rule “Lat1” gives noticeably worse
results than Sobol′ points and the other three lattice rules. This particular lattice rule is
designed for integrands with only second-order interactions (assuming no higher order
terms are present), and is clearly not suitable for our integrands here. It goes to show that

24



Figure 6: Example 1 with d = 25. log10 relative integrals and log10 relative standard errors
obtained from 30 repetitions based on 10 random shifts of 32768 points.
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the selection of weights in the design of lattice rules to match the dimension structure of
the integrands indeed have some practical effects. Leaving this “bad” lattice rule aside,
the other three lattice rules appear to give slightly better results than the Sobol′ points.

The best transformation for MC is “Normal + PCA”. Note that the method of de-
composition (i.e. PCA or Cholesky) should have no impact on the performance of MC
theoretically. This is because the MC root mean square error depends on the total vari-
ance of the transformed integrand, which is invariant under different decompositions.

The best transformation for QMC is “Logistic 0.6 + Cholesky”. Quantitatively, we take
the average median of the relative standard errors for QMC (with “Lat1” excluded) under
each transformation method and compare it with the median of the relative standard
error for MC under its best transformation “Normal + PCA”. The improvement of QMC
over MC in terms of the reduction in standard errors are 3.3 for “Logistic 0.6 + Cholesky”,
2.5 for “Normal + Cholesky”, 2.4 for “Normal + PCA”, and 2.3 for “Logistic 0.6 + PCA”.
In other words, the MC standard errors can be more than three times the QMC standard
errors.

Conclusion from Figure 7

Figure 7 includes results for Example 2 (which has a fixed dimension d = 25) with N =
32768. For this example, the superiority of QMC over MC stands out even more. It is also
very clear that the normal distribution consistently gives better results than the logistic
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Figure 7: Example 2 (d = 25). log10 relative integrals and log10 relative standard errors obtained
from 30 repetitions based on 10 random shifts of 32768 points.
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distribution. The best transformation for MC is again “Normal + PCA”, but the best
transformation for QMC is now “Normal + Cholesky”. We experimented with several
values of λ for the logistic distribution and none of them give better results than the
standard normal distribution. There must be some foundational differences between the
integrands of Examples 1 and 2 which are yet to be identified.

As in Figure 6, the lattice rule “Lat1” appears to give worse results than other lattice
rules, although the differences are not so noticeable here. With “Lat1” excluded, the other
three lattice rules again appear to give slightly better results than the Sobol′ points. In
terms of the reduction in standard errors, QMC beats MC (under its best transformation
“Normal + PCA”) by a factor of 7.2 for “Normal + Cholesky”, 2.8 for “Normal + PCA”,
1.5 for “Logistic 0.6 + Cholesky”, and 1.4 for “Logistic 0.6 + PCA”. For this example, the
MC standard errors can be more than seven times the QMC standard errors.

Conclusion from Figure 8

The results we have discussed so far correspond to a low nominal dimension of d =
25. Although d = 25 is reasonable for a random effect model such as Example 2, the
dimension of interest for a time-series model like Example 1 is often in the hundreds
or thousands. Therefore we consider d = 50, 100, 150, 200 in Example 1 and carry out
similar calculations as before (but with more integration points). It is noticeable that as
the dimension d increases, the superiority of QMC over MC is dramatically reduced.
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Figure 8: Example 1 with d = 200. log10 relative integrals and log10 relative standard errors
obtained from 30 repetitions based on 10 random shifts of 65536 points.
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The results for d = 200 is summarised in Figure 8. At d = 200, QMC performs only
slightly better than MC under the same transformation, and the best transformation for
both MC and QMC appears to be “Normal + PCA”. The QMC results under “Logistic
0.6 + PCA” and “Logistic 0.6 + Cholesky” are in fact worse than the MC results under
“Normal + PCA” or “Normal + Cholesky”. The improvement of QMC over MC, both
under “Normal + PCA”, is a factor of merely 1.13.

To provide a readable scale, three outliers have been cropped out of the MC plot for
“Normal + Cholesky”: their log10 relative integral values are roughly 3.37, 2.91, and 1.88.
These gross outliers correspond to integration points being extremely close to the bound-
aries of the unit cube where the transformed integrand is unbounded. Since the “Normal
+ Cholesky” transformation can lead to more problem boundaries (see the Appendix), it
is understandable that we see more outliers in this case.

Recall that when d = 25 in Example 1 the best QMC transformation is “Logistic 0.6 +
Cholesky”. As d increases we observe that the best QMC transformation becomes “Nor-
mal + PCA”. One possible explanation might be that in higher dimensions the region
where the transformed integrand under “Normal + PCA” is unbounded is relatively tiny,
while in most parts of the unit cube the integrand is almost constant. Thus the chance of
getting an integration point in this tiny region is fairly slim. (We increased N to about
one million and the best QMC transformation is still “Normal + PCA”. However, with
this many points, we ended up with many MC points close to the problem region under
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“Normal + Cholesky” and this resulted in massive outliers.)

6 Optimisation Using Quasi-Newton

The maximum likelihood approach seeks the parameter estimates (βββ,ΣΣΣ) that maximise
the log-likelihood `(βββ,ΣΣΣ). Efficient numerical methods (see e.g. Fletcher, 1987; Nocedal
& Wright, 1999) require at least the gradient and an approximation of the Hessian of
`(βββ,ΣΣΣ). A quasi-Newton method uses difference in the gradients from successive iterations
to build up an approximation to the Hessian, in combination with a line search to gain
improvements in the objective. Here we provide only a brief outline of the optimisation
process for Example 1 and highlight some important issues.

Let θθθ = (φ, σ, β)> denote the vector of parameters in Example 1, let `(θθθ) denote the
log-likelihood associated with θθθ, and let L(θθθ) = −`(θθθ)/`(θθθ(0)) denote the objective func-
tion (which we aim to “minimise”), where θθθ(0) is our starting point, for example, the
values based on the Laplace approximation. (Note that for both Examples 1 and 2, the
objective function values and its derivatives are expensive to obtain, but the number of
parameters is relatively small.)

We need the gradient vector ∇L(θθθ) = (∂L
∂φ ,

∂L
∂σ ,

∂L
∂β )> as a function of θθθ. If I ≡ I(θθθ)

denotes the integral
∫
Rd exp{F (w)}dw as a function of θθθ, then we need to evaluate

∂I

∂φ
= − φ

1− φ2
I − 1

2

∫

Rd

exp{F (w)} (w>ΣΣΣ−1
φ w) dw,

∂I

∂σ
= −d

σ
I − 1

2

∫

Rd

exp{F (w)} (w>ΣΣΣ−1
σ w) dw,

∂I

∂β
= (1>y) I − eβ

∫

Rd

exp{F (w)} (1>ew) dw,

where

ΣΣΣ−1
φ :=

∂ΣΣΣ−1

∂φ
=

1
σ2




0 −1 0 · · · 0 0
−1 2φ −1 · · · 0 0
0 −1 2φ · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 2φ −1
0 0 0 · · · −1 0




and ΣΣΣ−1
σ :=

∂ΣΣΣ−1

∂σ
= − 2

σ
ΣΣΣ−1.

Thus to obtain L(θθθ) and its gradient ∇L(θθθ) for each θθθ, we need to evaluate the integral
I(θθθ) plus three additional integrals.

Since the integrals will be estimated by the averages of transformed integrand values,
to ensure that the estimate of the gradient vector is continuous and consistent, we need to
use the same integration rule and the same transformation method for all four integrals.
In other words, rather than finding the correct centre and scaling for each integrand sepa-
rately, we use the centre and scaling obtained for the integrand in I(θθθ) in all four integral
calculations. Fortunately, the integrands in these three additional integrals are just the
integrand in I(θθθ) multiplied by simple terms like w>ΣΣΣ−1

φ w, w>ΣΣΣ−1
σ w, and 1>ew, which

do not have much impact on the feature of the integrand.
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Starting with a parameter vector θθθ(0) and an approximate Hessian B(0) at θθθ(0) (initially
B(0) = I is often used), in step k we need to solve

B(k)d(k) = −∇L(θθθ(k))

for the search direction d(k). Then the next iterate is given by

θθθ(k+1) := θθθ(k) + α(k)d(k),

where α(k) is the minimiser of lk(α) = L(θθθ(k) + αd(k)) obtained by an approximate line
search based on modeling lk(α) by a quadratic or cubic polynomial in α and then deter-
mining its stationary points by making use of l′k(α) = d(k)>∇L(θθθ(k)). The approximate
Hessian can be updated using, for example, the BFGS update

B(k+1) := B(k) +
t(k)t(k)>

s(k)>t(k)
− v(k)v(k)>

s(k)>v(k)
,

where

s(k) := θθθ(k+1) − θθθ(k) = α(k)d(k),

t(k) := ∇L(θθθ(k+1))−∇L(θθθ(k)),

v(k) := B(k)s(k) = −α(k)∇L(θθθ(k)).

The approximate line search conditions ensure that s(k)>t(k) > 0 so that if B(0) is positive
definite then all subsequent B(k) are positive definite. The quasi-Newton approximation
satisfies the quasi-Newton relation B(k+1)s(k) = t(k), thus B(k+1) includes information
from the difference in gradients t(k) over the step s(k).

We stress once again that it is important to use the same transformation and point
set for both the objective value and its gradient, so that the derivatives are exact for the
approximated objective. If this is not done, then both the line search and the gradient
difference used to update the Hessian approximation can be affected. However, chang-
ing the parameter vector θθθ(k) changes the correct centre and scaling for the integrands.
Experiments from the previous section show that the centring and rescaling play a cru-
cial role in the transformation process. It is therefore essential that we carry out only a
small number of iterations with a fixed centre and scaling to update the parameter vector.
Then we restart the process with the correct centre and scaling to the updated parameter
vector. The Hessian approximation obtained at the end of each each round can be used
as an initial approximation in the next round. Since the objective function arising from a
log-likelihood model is often close to a convex quadratic at the optimal parameters, no
more than p+ 1 steps of a p-parameter model should be done before updating the centre
and scaling. Thus for the objective L(θθθ) in Example 1, we should carry out no more than
4 steps.

Another issue is when to stop the optimisation iteration. Convergence of an optimi-
sation algorithm is typically based on the change in the objective function L(θθθ(k+1)) −
L(θθθ(k)) and the norm ‖∇L(θθθ(k))‖∞ becoming small. However, it makes no sense trying
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to push these below the estimated standard error in the MC or QMC integral calcula-
tions. Thus as the optimisation iterates converge, a strategy for increasing the number of
integration points is required.

Preliminary calculations indicate that a reasonable approximation of the maximum
likelihood parameters can be obtained with just a few optimisation rounds, each with
a small number of iteration steps. The Laplace approximation provides a very good
starting point for the optimisation process. The best combination of optimisation steps
with fixed centre and scaling and the strategy for increasing the number of integration
points still requires further study.

7 Summary

We carried out numerical experiments with the log-likelihood integrals from a Poisson
state-space time-series regression and a Poisson state-space linear mixed model. In both
cases, the transformation which brings the integrand into the unit cube plays a crucial
role because it determines the features of the transformed integrands. For small dimen-
sions such as d = 25, QMC dramatically outperforms MC. However, as d increases to 200,
the superiority of QMC over MC is diminished.

8 Appendix

8.1 Error Estimation Using Random Shifts

We now discuss how to use randomly-shifted QMC methods to provide error estimations.
Let ∆∆∆ denote a real vector in the unit cube, which we will refer to as the shift. The

∆-shift of a QMC method with points ξξξ1, . . . , ξξξN is a QMC method with points

frac(ξξξi + ∆∆∆), i = 1, . . . , N,

where frac(x) is the vector obtained by replacing each component of x by its fractional
part. It can be easily proved that the family of shifted QMC methods is an unbiased
estimator of the true integral If .

In practice, for a chosen QMC method QN , we generate a number of independent
random shifts ∆∆∆1,∆∆∆2, . . . ,∆∆∆r and form the approximations Q(1)

N , Q
(2)
N , . . . , Q

(r)
N , where

Q
(k)
N is the approximation of the integral If using a ∆∆∆k-shift of QN . Then we take the

average

QN :=
1
r
(Q(1)

N +Q
(2)
N + · · ·+Q

(r)
N )

as our final approximation to If . An unbiased estimate for the standard error of QN is
given by √√√√1

r

1
r − 1

r∑

k=1

(Q(k)
N −QN )2.
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8.2 Estimation of the Effective Dimensions

Here we outline the techniques described in Wang & Fang (2003) and Liu & Owen (2006)
for estimating the effective dimensions. Using the identity

Tu :=
∑

v⊆u

σ2(fv) =
∫

[0,1]2d−|u|
f(z)f(zu,w−u) dzdw−u −

(∫

[0,1]d
f(z) dz

)2

,

we can estimate the truncation dimension dT by approximating T{1}, T{1,2}, T{1,2,3}, . . . until
the value reaches 99% of the total variance σ2(f). Here (zu,w−u) denotes the vector
whose jth component is zj if j ∈ u and wj if j /∈ u. If {ξξξ1, . . . , ξξξN} and {ζζζ1, . . . , ζζζN} are
the points of two d-dimensional MC or QMC rules, then Tu can be approximated by

Tu ≈ 1
N

N∑

i=1

f(ξξξi)f(ξξξi,u, ζζζi,−u)− (If)2,

where If , as well as σ2(f), can be estimated using {ξξξ1, . . . , ξξξN}. Thus the cost of estimat-
ing dT is the evaluation of at most d + 2 integrals. The superposition dimension dS can
be estimated by making use of Tu recursively. However, unless the integrals involved
were computed very accurately, the propagation of the errors makes it impossible to get
a realistic answer for dS . The mean dimension dM can be computed using the simple
identity

dM =
1

σ2(f)

d∑

`=1

(
1
2

∫

[0,1]d+1

(
f(z)− f(w{`}, z−{`})

)2 dzdw{`}

)
,

which requires the evaluation of d+ 2 integrals.

8.3 Component-by-component Construction of Generating Vectors

Recall that the lattice points generated by ηηη are given by

ξξξi = frac
(
iηηη

N

)
, i = 1, . . . , N.

For shifted rank-1 lattice rules with random shifts, we consider a “shift-averaged” worst-
case error expression for our lattice rule generated by ηηη = (η1, . . . , ηd), which simplifies
to (taking squares)

e2N (η1, . . . , ηd) =
1
N

N∑

i=1

∑

∅6=u⊆{1,...,d}


γu

∏

j∈u

B2

(
frac

(
iηj

N

))
 ,

where B2(z) = z2 − z + 1/6 is the Bernoulli polynomial of degree 2. We shall not go into
the detail of the derivation of this expression. For a given N and a set of weights γu, the
components of a generating vector ηηη will be constructed one at a time as follows:

1. Set η1 = 1.
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2. For each d = 2, 3, . . ., with η1, . . . , ηd−1 fixed, choose ηd from the set {1 ≤ η ≤ N−1 :
gcd(η,N) = 1} to minimise eN (η1, . . . , ηd−1, ηd).

This construction is now known in the QMC community as the component-by-component
construction (e.g. Sloan et al., 2002). It has been proved that this construction leads to
lattice rules that achieve an error of order O(N−1+δ), δ > 0, which is the optimal rate
of convergence possible in our Sobolev space H (Kuo, 2003). The implied constant in
the big-O notation is independent of d provided that our weights γu satisfy a certain
condition.

Under the product weight setting, the total computational cost of this algorithm is
onlyO(N log(N) d) operations by making use of fast Fourier transforms (Nuyens & Cools,
2006). Similar reductions in computational cost are also possible for the order-dependent
weight setting.

8.4 Closer Examination of Transformation 1 with b(x) = ex

Clearly the dominating terms in the exponent of f1 are the exponential and the quadratic
terms, which can be written together as

−
d∑

j=1

vj exp((WA∗Ψ−1(z))j) + 1
2

d∑

j=1

vj(WA∗Ψ−1(z))2j , (12)

where v := exp(Xβββ+Ww∗), and (WA∗Ψ−1(z))j denotes the jth component of WA∗Ψ−1(z).
Consider the situation where one component of z, say zk, goes to either 0 or 1, while

all other components are away from the boundaries. Then the kth component of Ψ−1(z)
goes to ±∞ and all other components are finite. In this case, the vector WA∗Ψ−1(z)
contains either 0 or ±∞ depending on the signs of the entries in the kth column of WA∗.
For example, 



· · · 2 ·
· · · −1 ·
· · · 3 ·
· · · 1 ·
· · · 0 ·




WA∗




·
·
·

+∞
·




Ψ−1(z)

=




+∞
−∞
+∞
+∞

0 or +∞




WA∗Ψ−1(z)

It is obvious that the expression (12) goes to −∞ if any component of WA∗Ψ−1(z) goes
to +∞; otherwise the expression goes to +∞. Thus f1(z) → 0 if any component of
WA∗Ψ−1(z) goes to +∞; otherwise f1(z) → ∞. To be more precise, the unboundedness
occurs exactly when

• the kth column of WA∗ contains no negative entry and zk → 0;

• the kth column of WA∗ contains no positive entry and zk → 1.

Now we focus on Example 1 in which W = I. First we take A∗ to be the PCA factor
of ΣΣΣ∗. It turns out that only the first column of A∗ contains all positive entries; all other
columns contain entries with mixed signs. Thus f1(z) is only unbounded when z1 → 0.
On the other hand, the Cholesky factor of ΣΣΣ∗ has no negative entry in any column. In this
case f1(z) is unbounded whenever zk → 0 for any k.
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8.5 Details About the Numerical Experiments in Section 5

Precisions, random number generator, inverse normal, Sobol′ points

The matrix and vector arithmetics are carried out using LAPACK(Anderson et al., 1999) in
double precision. However, the accumulation of all integrals and the associated standard
error estimates are done in long double precision.

We use a modified version of the random number generator ran2 by L’Ecuyer from
Numerical Recipes in C (Press et al., 1995); we changed it to long double precision and
we removed the guard for numbers getting close to 1. The inverse cumulative normal
distribution function is computed using the online algorithm by Acklam (2006). It is
accurate to full machine precision.

The parameters for the Sobol′ points are obtained from Joe and Kuo (2003), see also
Bratley and Fox (1988).

Truncation and mean dimensions

Following Section 8.2, we estimate the truncation and mean dimensions for Examples 1
and 2 using both Monte Carlo points and Sobol′ points. We use 500000 points for d =
25, 50, 100 and 1000000 points for d = 150, 200. Each calculation is done with a single
shift, and we repeat the calculation ten times. The number we report is the average of 20
results consisting of ten MC results and ten Sobol′ results.

Two-dimensional projections

Figures 4 and 5 contain some two-dimensional projections corresponding to various trans-
formed integrands for Example 1 with d = 25.

The graphs (a.1), (a.2), and (a.3) correspond to the transformed integrand obtained by
using “Normal + PCA”. In particular, graph (a.1) is the project of z1 and z5 through the
centre of the unit cube (0.5, . . . , 0.5), graph (a.2) is the projection of z3 and z25 through
the point (0.3, . . . , 0.3), and graph (a.3) is the projection of z7 and z11 through the point
(0.8, . . . , 0.8). The graphs (b.1), (b.2), and (b.3) are obtained with the same parameters,
except that they correspond to the transformed integrand obtained by using “Logistic 0.6
+ Cholesky”.

Graph (c) corresponds to the transformed integrand obtained without doing centring
or rescaling. It uses the normal distribution and the PCA factor of the original covariance
matrix ΣΣΣ. The graph is the projection of z1 and z5 through the centre of the unit cube.

Graph (d) corresponds to the transformed integrand obtained with centring but with-
out rescaling. It uses the logistic distribution with λ = 1 and the PCA factor of the original
covariance matrix ΣΣΣ. The graph is the projection of z1 and z5 through the centre of the
unit cube.

Choices of lattice rules

In our numerical experiments we used lattice rules constructed from four different choices
of weight settings, including two “finite-order and order-dependent weights”, one “equal
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Table 1: Lattice rules constructed based on four choices of weights.

Lat1 ORDER TWO All second order interactions are equally
important and there is no higher order
interaction.

Γ1 = Γ2 = 1,
Γ` = 0 ∀` ≥ 3

Lat2 ORDER THREE 0.5 The third order interactions are only half as
important as the second order interactions and
there is no higher order interaction.

Γ1 = Γ2 = 1, Γ3 = 0.5,
Γ` = 0 ∀` ≥ 4

Lat3 EQUAL PRODUCT All variables are equally important, and the
higher order interactions become less and less
important by a factor of 0.5.

γ{j} = 0.5,
or Γ` = 0.5` ∀` ≥ 1

Lat4 DECAYING PRODUCT The importance of successive variables decays
like 1/j, and the weight associated with any
group of variables is simply the product of the
weights for those variables in this group.

γ{j} = 1/j

product weights”, and one “decaying product weights”, see Table 1.
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