8 research outputs found

    Profiling of ABC transporters

    Get PDF

    Assessment of sample preparation bias in mass spectrometry-based proteomics

    Get PDF
    For mass spectrometry-based proteomics, the selected sample preparation strategy is a key determinant for information that will be obtained. However, the corresponding selection is often not based on a fit-for-purpose evaluation. Here we report a comparison of in-gel (IGD), in-solution (ISD), on-filter (OFD), and on-pellet digestion (OPD) workflows on the basis of targeted (QconCAT-multiple reaction monitoring (MRM) method for mitochondrial proteins) and discovery proteomics (data dependent acquisition, DDA) analyses using three different human head and neck tissues (i.e. nasal polyps, parotid gland, and palatine tonsils). Our study reveals differences between the sample preparation methods, for example with respect to protein and peptide losses, quantification variability, protocol-induced methionine oxidation and asparagine/glutamine deamidation as well as identification of cysteine containing peptides. However, none of the methods performed best for all types of tissues, which argues against the existence of a universal sample preparation method for proteome analysis

    Targeted proteomics to study mitochondrial biology

    No full text
    Targeted mass spectrometry in the selected or parallel reaction monitoring (SRM or PRM) mode is a widely used methodology to quantify proteins based on so-called signature or proteotypic peptides. SRM has the advantage of being able to quantify a range of proteins in a single analysis, for example, to measure the level of enzymes comprising a biochemical pathway. In this chapter, we will detail how to set up an SRM assay on the example of the mitochondrial protein succinate dehydrogenase [ubiquinone] flavoprotein subunit (mouse UniProt-code Q8K2B3). First, we will outline the in silico assay design including the choice of peptides based on a range of properties. We will further delineate different quantification strategies and introduce the reader to LC-MS assay development including the selection of the optimal peptide charge state and fragment ions as well as a discussion of the dynamic range of detection. The chapter will close with an application from the area of mitochondrial biology related to the quantification of a set of proteins isolated from mouse liver mitochondria in a study on mitochondrial respiratory flux decline in aging mouse muscle

    Targeted LC-MS/MS for the evaluation of proteomics biomarkers in the blood of neonates with necrotizing enterocolitis and late-onset sepsis

    Get PDF
    Late-onset sepsis (LOS) and necrotizing enterocolitis (NEC) are severe life-threatening conditions for neonates. Accurate, early diagnosis and timely initiation of treatment are crucial. Non-specific overlapping clinical signs along with the non-sensitive/specific diagnostic tools set obstacles to speedy, trustful diagnosis including differential diagnosis. The objective of this study was to evaluate the potential of targeted LC-MS/MS proteomics in identifying diagnostic biomarkers of NEC or LOS. We conducted a prospective case-control study evaluating serum proteomics profiles of 25 NEC, 18 LOS, and an equal number of matched control neonates, over three sampling points. Eighty-three concatemers and synthetic peptides belonging to 47 protein markers of the two diseases were selected after thorough literature search. A novel selected reaction monitoring (SRM), LC-MS/MS method was developed for their analysis and evaluation as potential biomarkers. Multivariate and univariate statistical analyses highlighted significant proteins in differentiating LOS and NEC neonates and diseased from controls. Moreover, panels of proteins were tested for their ability to distinguish LOS from NEC and controls. We suggest two panels of three proteins each, exhibiting very high diagnostic value for LOS and excellent diagnostic performance at the critical LOS-NEC differentiation, reaching an AUC ROC value close to 1 (0.999). These panels constitute a valuable starting point for further validation with broader cohorts of neonates, aiming to improve the clinical practice

    Posttranscriptional Regulation of the Human LDL Receptor by the U2-Spliceosome

    Get PDF
    International audienceBACKGROUND: The LDLR (low-density lipoprotein receptor) in the liver is the major determinant of LDL-cholesterol levels in human plasma. The discovery of genes that regulate the activity of LDLR helps to identify pathomechanisms of hypercholesterolemia and novel therapeutic targets against atherosclerotic cardiovascular disease. METHODS: We performed a genome-wide RNA interference screen for genes limiting the uptake of fluorescent LDL into Huh-7 hepatocarcinoma cells. Top hit genes were validated by in vitro experiments as well as analyses of data sets on gene expression and variants in human populations. RESULTS: The knockdown of 54 genes significantly inhibited LDL uptake. Fifteen of them encode for components or interactors of the U2-spliceosome. Knocking down any one of 11 out of 15 genes resulted in the selective retention of intron 3 of LDLR. The translated LDLR fragment lacks 88% of the full length LDLR and is detectable neither in nontransfected cells nor in human plasma. The hepatic expression of the intron 3 retention transcript is increased in nonalcoholic fatty liver disease as well as after bariatric surgery. Its expression in blood cells correlates with LDL-cholesterol and age. Single nucleotide polymorphisms and 3 rare variants of one spliceosome gene, RBM25, are associated with LDL-cholesterol in the population and familial hypercholesterolemia, respectively. Compared with overexpression of wild-type RBM25, overexpression of the 3 rare RBM25 mutants in Huh-7 cells led to lower LDL uptake. CONCLUSIONS: We identified a novel mechanism of posttranscriptional regulation of LDLR activity in humans and associations of genetic variants of RBM25 with LDL-cholesterol levels
    corecore