140 research outputs found

    SPACE GROUPS AND ATOMIC PARAMETERS IN SOME GRAPHITE-ALKALI METAL LAMELLAR COMPOUNDS

    Get PDF

    Effects of pressure on the local atomic structure of CaWO4 and YLiF4: Mechanism of the scheelite-to-wolframite and scheelite-to-fergusonite transitions

    Full text link
    The pressure response of the scheelite phase of CaWO4 (YLiF4) and the occurrence of the pressure induced scheelite-to-wolframite (M-fergusonite) transition are reviewed and discussed. It is shown that the change of the axial parameters under compression is related with the different pressure dependence of the W-O (Li-F) and Ca-O (Y-F) interatomic bonds. Phase transition mechanisms for both compounds are proposed. Furthermore, a systematic study of the phase transition in 16 different scheelite ABX4 compounds indicates that the transition pressure increases as the packing ratio of the anionic BX4 units around the A cations increases.Comment: 38 pages, 10 figures (Figure 5 corrected), accepted for publication in Journal of Solid State Chemistr

    Free energy and molecular dynamics calculations for the cubic-tetragonal phase transition in zirconia

    Full text link
    The high-temperature cubic-tetragonal phase transition of pure stoichiometric zirconia is studied by molecular dynamics (MD) simulations and within the framework of the Landau theory of phase transformations. The interatomic forces are calculated using an empirical, self-consistent, orthogonal tight-binding (SC-TB) model, which includes atomic polarizabilities up to the quadrupolar level. A first set of standard MD calculations shows that, on increasing temperature, one particular vibrational frequency softens. The temperature evolution of the free energy surfaces around the phase transition is then studied with a second set of calculations. These combine the thermodynamic integration technique with constrained MD simulations. The results seem to support the thesis of a second-order phase transition but with unusual, very anharmonic behaviour above the transition temperature

    Microscopy in forensic science

    Get PDF
    This chapter examines the use of electron microscopy, atomic force microscopy and other analytical techniques in forensic investigation and research. These tools can be used to enhance examination of human remains and trace evidence to improve understanding of cause of death, victim identification or post mortem interval.A police-designed scenario is used to highlight trace evidence such as glass, gun shot residue and paint. The validity of forensic techniques is discussed, with reference to international standards, repeatability, and false convictions. Ballistic evidence is used to highlight the complexities in evidence interpretation, including manufacturing variability, environmental effects and likelihood ratios.The use of scanning electron microscopy (SEM), atomic force microscopy (AFM) and other techniques in the development of forensic research is showcased, with particular examples from the field of fingerprints. Examples include improvements in the development of fingermarks from difficult surfaces, interaction of evidence types, and added intelligence from the crime scene, such as forensic timeline or gender of perpetrator

    Developing a quality assurance program for gunshot primer residue analysis

    No full text
    corecore