742 research outputs found

    Multidecadal variability in hydro-climate of Okavango river system, southwest Africa, in the past and under future climate

    Get PDF
    The focus of this paper is to understand the multi-decadal oscillatory component of variability in the Okavango River system, in southwestern Africa, and its potential evolution through the 21st century under climate change scenarios. Statistical analyses and hydrological modelling are used to show that the observed multi-decadal wet and dry phases in the Okavango River and Delta result from multi-decadal oscillations in rainfall, which are likely to be related to processes of internal variability in the climate system, rather than external natural or anthropogenic forcing. Analyses of changes in this aspect of variability under projected climate change scenarios are based on data from a multi-model ensemble of 19 General Circulation Models, which are used to drive hydrological models of the Okavango River and Delta. Projections for the 21st century indicate a progressive shift towards drier conditions attributed to the influence of increasing temperatures on water balance. It is, however, highly likely that multi-decadal oscillations, possibly of similar magnitude to that of 20th century, will be superimposed on the overall trend. These may periodically offset or amplify the mean drying trend. This effect should be accounted for in water and catchment management and climate change adaptation strategies

    Flooding dynamics in a large low-gradient alluvial fan, the Okavango Delta, Botswana, from analysis and interpretation of a 30-year hydrometric record

    Get PDF
    The Okavango Delta is a flood-pulsed wetland, which supports a large tourism industry and the subsistence of the local population through the provision of ecosystem services. In order to obtain insight into the influence of various environmental factors on flood propagation and distribution in this system, an analysis was undertaken of a 30-year record of hydrometric data (discharges and water levels) from one of the Delta distributaries. The analysis revealed that water levels and discharges at any given channel site in this distributary are influenced by a complex interplay of flood wave and local rainfall inputs, modified by channel-floodplain interactions, in-channel sedimentation and technical interventions, both at the given site and upstream. Additionally, cyclical variation of channel vegetation due to intermittent nutrient loading, possibly sustained by nutrient recycling, may play a role. It is shown that short and long-term flood dynamics are mainly due to variation in floodplain flows. As a consequence, discharge data collected within the main channels of distributaries do not adequately represent flooding dynamics in the system. The paper contributes to the understanding of seasonal and long-term flood pulsing and their variation in low gradient systems of channels and floodplains

    Alternative futures’ of the Okavango Delta simulated by a suite of global climate and hydro-ecological models

    Get PDF
    The natural resources of the Okavango Delta, a large wetland in semi-arid Botswana, form the basis of livelihoods of the local population and support economically important high-end tourism. The hydro-ecological system is dynamic at various time scales, responding to climate variability, and both flood and drought conditions have in the past put pressure on the system’s users. Human-induced climate change can potentially exacerbate the effects of existing climate variability. In this paper, we present simulated future hydro-ecological conditions in the Okavango Delta generated by a step-wise modelling procedure. The outputs of three different global climate models are used to drive a suite of hydrological models. Lastly, a rule-based dynamic model relates hydroperiod conditions to vegetation assemblages. The simulated future conditions vary from much drier to much wetter than those recorded in the past. Models indicate that climatic change would result in change in both extent and distribution of the major ecotopes of the Okavango Delta. Importantly, the different ecotopes will be affected to varying degrees. The projected changes will have consequences for the wildlife-based management of the system. They will affect, for example, available grazing and migration/ movement patterns of large herbivores, as well as fish. Such consequences can have rapid up-trophic level effects, ultimately leading to potentially substantial impacts on the economy. The main conclusion to be drawn is that management planning and land-use systems should be as flexible as possible.Keywords: climate change, development planning, GCM, hydro-ecological modelling, wetland managemen

    Elastic properties of cubic crystals: Every's versus Blackman's diagram

    Full text link
    Blackman's diagram of two dimensionless ratios of elastic constants is frequently used to correlate elastic properties of cubic crystals with interatomic bondings. Every's diagram of a different set of two dimensionless variables was used by us for classification of various properties of such crystals. We compare these two ways of characterization of elastic properties of cubic materials and consider the description of various groups of materials, e.g. simple metals, oxides, and alkali halides. With exception of intermediate valent compounds, the correlation coefficients for Every's diagrams of various groups of materials are greater than for Blackaman's diagrams, revealing the existence of a linear relationship between two dimensionless Every's variables. Alignment of elements and compounds along lines of constant Poisson's ratio ν(,m)\nu(,\textbf{m}), (m\textbf{m} arbitrary perpendicular to ) is observed. Division of the stability region in Blackman's diagram into region of complete auxetics, auxetics and non-auxetics is introduced. Correlations of a scaling and an acoustic anisotropy parameter are considered.Comment: 8 pages, 9 figures, presented on The Ninth International School on Theoretical Physics "Symmetry and Structural Properties of Condensed Matter", 5 - 12 September 2007, Myczkowce, Polan

    2D and 3D cubic monocrystalline and polycrystalline materials: their stability and mechanical properties

    Full text link
    We consider 2- and 3-dimensional cubic monocrystalline and polycrystalline materials. Expressions for Young's and shear moduli and Poisson's ratio are expressed in terms of eigenvalues of the stiffness tensor. Such a form is well suited for studying properties of these mechanical characteristics on sides of the stability triangles. For crystalline high-symmetry directions lines of vanishing Poisson's ratio are found. These lines demarcate regions of the stability triangle into areas of various auxeticity properties. The simplest model of polycrystalline 2D and 3D cubic materials is considered. In polycrystalline phases the region of complete auxetics is larger than for monocrystalline materials.Comment: 9 pages, 3 figures, in proceedings of the Tenth International School on Theoretical Physics, Symmetry and Structural Properties of Condensed Matter, Myczkowce 200

    Monitoring and simulating threats to aquatic biodiversity in the Okavango Delta: field and laboratory methods

    Get PDF
    The Okavango Delta, situated in northwest Botswana between E22.0°-E24.0° and S18.0°-S20.5°, is the world's second largest inland wetland region. The Delta is actually an alluvial fan and is fed mainly by the Okavango River whose catchment lies largely in the highlands of central Angola (Fig 1). The river flows south-east through the Caprivi Strip in eastern Namibia, before entering into Botswana as a large river, some 200 m in width. The size of the Delta changes significantly throughout the year - during the dry season, the Delta is approximately 7,000 km2, and more than doubles in size to over 15,000 km^{2} during the wet season (Ramberg et al. 2006)

    A Scalable Approach to Network Enabled Servers

    Full text link

    Selecting texture resolution using a task-specific visibility metric

    Get PDF
    In real-time rendering, the appearance of scenes is greatly affected by the quality and resolution of the textures used for image synthesis. At the same time, the size of textures determines the performance and the memory requirements of rendering. As a result, finding the optimal texture resolution is critical, but also a non-trivial task since the visibility of texture imperfections depends on underlying geometry, illumination, interactions between several texture maps, and viewing positions. Ideally, we would like to automate the task with a visibility metric, which could predict the optimal texture resolution. To maximize the performance of such a metric, it should be trained on a given task. This, however, requires sufficient user data which is often difficult to obtain. To address this problem, we develop a procedure for training an image visibility metric for a specific task while reducing the effort required to collect new data. The procedure involves generating a large dataset using an existing visibility metric followed by refining that dataset with the help of an efficient perceptual experiment. Then, such a refined dataset is used to retune the metric. This way, we augment sparse perceptual data to a large number of per-pixel annotated visibility maps which serve as the training data for application-specific visibility metrics. While our approach is general and can be potentially applied for different image distortions, we demonstrate an application in a game-engine where we optimize the resolution of various textures, such as albedo and normal maps
    • …
    corecore