96 research outputs found

    Interpolating Detailed Simulations of Kilonovae: Adaptive Learning and Parameter Inference Applications

    Full text link
    Detailed radiative transfer simulations of kilonovae are difficult to apply directly to observations; they only sparsely cover simulation parameters, such as the mass, velocity, morphology, and composition of the ejecta. On the other hand, semianalytic models for kilonovae can be evaluated continuously over model parameters, but neglect important physical details which are not incorporated in the simulations, thus introducing systematic bias. Starting with a grid of 2D anisotropic simulations of kilonova light curves covering a wide range of ejecta properties, we apply adaptive-learning techniques to iteratively choose new simulations and produce high-fidelity surrogate models for those simulations. These surrogate models allow for continuous evaluation across model parameters while retaining the microphysical details about the ejecta. Using a new code for multimessenger inference, we demonstrate how to use our interpolated models to infer kilonova parameters. Comparing to inferences using simplified analytic models, we recover different ejecta properties. We discuss the implications of this analysis which is qualitatively consistent with similar previous work using detailed ejecta opacity calculations and which illustrates systematic challenges for kilonova modeling. An associated data and code release provides our interpolated light-curve models, interpolation implementation which can be applied to reproduce our work or extend to new models, and our multimessenger parameter inference engine.Comment: 19 pages, 15 figure

    Constraining inputs to realistic kilonova simulations through comparison to observed rr-process abundances

    Full text link
    Kilonovae, one source of electromagnetic emission associated with neutron star mergers, are powered by the decay of radioactive isotopes in the neutron-rich merger ejecta. Models for kilonova emission consistent with the electromagnetic counterpart to GW170817 predict characteristic abundance patterns, determined by the relative balance of different types of material in the outflow. Assuming the observed source is prototypical, this inferred abundance pattern in turn must match rr-process abundances deduced by other means, such as what is observed in the solar system. We report on analysis comparing the input mass-weighted elemental compositions adopted in our radiative transfer simulations to the mass fractions of elements in the Sun, as a practical prototype for the potentially universal abundance signature from neutron-star mergers. We characterize the extent to which our parameter inference results depend on our assumed composition for the dynamical and wind ejecta and examine how the new results compare to previous work. We find that a dynamical ejecta composition calculated using the FRDM2012 nuclear mass and FRLDM fission models with extremely neutron-rich ejecta (Ye=0.035Y_{\rm{e}} = 0.035) along with moderately neutron-rich (Ye=0.27Y_{\rm e} = 0.27) wind ejecta composition yields a wind-to-dynamical mass ratio of Mw/MdM_{\rm{w}}/M_{\rm{d}} = 0.47 which best matches the observed AT2017gfo kilonova light curves while also producing the best-matching abundance of neutron-capture elements in the solar system.Comment: 16 pages, 9 figures, submitted to PR

    Light curves and spectra from a thermonuclear explosion of a white dwarf merger

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Double-degenerate (DD) mergers of carbon-oxygen white dwarfs have recently emerged as a leading candidate for normal Type Ia supernovae (SNe Ia). However, many outstanding questions surround DD mergers, including the characteristics of their light curves and spectra. We have recently identified a spiral instability in the post-merger phase of DD mergers and demonstrated that this instability self-consistently leads to detonation in some cases. We call this the spiral merger SN Ia model. Here, we utilize the SuperNu radiative transfer software to calculate three-dimensional synthetic light curves and spectra of the spiral merger simulation with a system mass of 2.1 from Kashyap et al. Because of their large system masses, both violent and spiral merger light curves are slowly declining. The spiral merger resembles very slowly declining SNe Ia, including SN 2001ay, and provides a more natural explanation for its observed properties than other SN Ia explosion models. Previous synthetic light curves and spectra of violent DD mergers demonstrate a strong dependence on viewing angle, which is in conflict with observations. Here, we demonstrate that the light curves and spectra of the spiral merger are less sensitive to the viewing angle than violent mergers, in closer agreement with observation. We find that the spatial distribution of 56Ni and IMEs follows a characteristic hourglass shape. We discuss the implications of the asymmetric distribution of 56Ni for the early-time gamma-ray observations of 56Ni from SN 2014J. We suggest that DD mergers that agree with the light curves and spectra of normal SNe Ia will likely require a lower system mass.This work is supported in part at the University of Chicago by the National Science Foundation under grants AST-0909132, PHY-0822648 (JINA, Joint Institute for Nuclear Astrophysics), and PHY–1430152 (JINA-CEE, Joint Institute for Nuclear Astrophysics). This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575. Simulations at UMass Dartmouth were performed on a computer cluster supported by NSF grant CNS-0959382 and AFOSR DURIP grant FA9550-10-1-0354. The work of E.G.-B., G.A.-S., and P. L.-A. was partially funded by the MINECO AYA2014-59084- P grant and by the AGAUR. This research has made use of NASA’s Astrophysics Data System and the yt astrophysics analysis software suit

    Fast evolving pair-instability supernova models: evolution, explosion, light curves

    Get PDF
    With an increasing number of superluminous supernovae (SLSNe) discovered, the question of their origin remains open and causes heated debates in the supernova community. Currently, there are three proposed mechanisms for SLSNe: (1) pair-instability supernovae (PISNe), (2) magnetar-driven supernovae and (3) models in which the supernova ejecta interacts with a circumstellar material ejected before the explosion. Based on current observations of SLSNe, the PISN origin has been disfavoured for a number of reasons. Many PISN models provide overly broad light curves and too reddened spectra, because of massive ejecta and a high amount of nickel. In the current study, we re-examine PISN properties using progenitor models computed with the GENEC code. We calculate supernova explosions with FLASH and light-curve evolution with the radiation hydrodynamics code STELLA. We find that high-mass models (200 and 250 M⊙) at relatively high metallicity (Z = 0.001) do not retain hydrogen in the outer layers and produce relatively fast evolving PISNe Type I and might be suitable to explain some SLSNe. We also investigate uncertainties in light-curve modelling due to codes, opacities, the nickel-bubble effect and progenitor structure and composition

    A long gamma-ray burst from a merger of compact objects

    Get PDF
    Gamma-ray bursts (GRBs) are flashes of high-energy radiation arising from energetic cosmic explosions. Bursts of long (>2 s) duration are produced by the core-collapse of massive stars, those of short (< 2 s) duration by the merger of two neutron stars (NSs). A third class of events with hybrid high-energy properties was identified, but never conclusively linked to a stellar progenitor. The lack of bright supernovae rules out typical core-collapse explosions, but their distance scales prevent sensitive searches for direct signatures of a progenitor system. Only tentative evidence for a kilonova has been presented. Here we report observations of the exceptionally bright GRB211211A that classify it as a hybrid event and constrain its distance scale to only 346 Mpc. Our measurements indicate that its lower-energy (from ultraviolet to near-infrared) counterpart is powered by a luminous (~1E42 erg/s) kilonova possibly formed in the ejecta of a compact binary merger.Comment: original version, accepted for publication after revisio

    A search for optical and near-infrared counterparts of the compact binary merger GW190814

    Get PDF
    We report on our observing campaign of the compact binary merger GW190814, detected by the Advanced LIGO and Advanced Virgo detectors on August 14th, 2019. This signal has the best localisation of any observed gravitational wave (GW) source, with a 90% probability area of 18.5 deg2^2, and an estimated distance of ~ 240 Mpc. We obtained wide-field observations with the Deca-Degree Optical Transient Imager (DDOTI) covering 88% of the probability area down to a limiting magnitude of ww = 19.9 AB. Nearby galaxies within the high probability region were targeted with the Lowell Discovery Telescope (LDT), whereas promising candidate counterparts were characterized through multi-colour photometry with the Reionization and Transients InfraRed (RATIR) and spectroscopy with the Gran Telescopio de Canarias (GTC). We use our optical and near-infrared limits in conjunction with the upper limits obtained by the community to constrain the possible electromagnetic counterparts associated with the merger. A gamma-ray burst seen along its jet's axis is disfavoured by the multi-wavelength dataset, whereas the presence of a burst seen at larger viewing angles is not well constrained. Although our observations are not sensitive to a kilonova similar to AT2017gfo, we can rule out high-mass (> 0.1 M⊙_{\odot}) fast-moving (mean velocity >= 0.3c) wind ejecta for a possible kilonova associated with this merger.Comment: 17 pages, 11 figures, 5 tables; updated acknowledgement section. Accepted for publication in MNRAS (10 September 2020
    • …
    corecore