179 research outputs found

    Fabrication of a Cryogenic Bias Filter for Ultrasensitive Focal Plane

    Get PDF
    A fabrication process has been developed for cryogenic in-line filtering for the bias and readout of ultrasensitive cryogenic bolometers for millimeter and submillimeter wavelengths. The design is a microstripline filter that cuts out, or strongly attenuates, frequencies (10 50 GHz) that can be carried by wiring staged at cryogenic temperatures. The filter must have 100-percent transmission at DC and low frequencies where the bias and readout lines will carry signal. The fabrication requires the encapsulation of superconducting wiring in a dielectric-metal envelope with precise electrical characteristics. Sufficiently thick insulation layers with high-conductivity metal layers fully surrounding a patterned superconducting wire in arrayable formats have been demonstrated. A degenerately doped silicon wafer has been chosen to provide a metallic ground plane. A metallic seed layer is patterned to enable attachment to the ground plane. Thick silicon dioxide films are deposited at low temperatures to provide tunable dielectric isolation without degrading the metallic seed layer. Superconducting wiring is deposited and patterned using microstripline filtering techniques to cut out the relevant frequencies. A low Tc superconductor is used so that it will attenuate power strongly above the gap frequency. Thick dielectric is deposited on top of the circuit, and then vias are patterned through both dielectric layers. A thick conductive film is deposited conformally over the entire circuit, except for the contact pads for the signal and bias attachments to complete the encapsulating ground plane. Filters are high-aspect- ratio rectangles, allowing close packing in one direction, while enabling the chip to feed through the wall of a copper enclosure. The chip is secured in the copper wall using a soft metal seal to make good thermal and electrical contact to the outer shield

    Fabrication of a Cryogenic Terahertz Emitter for Bolometer Focal Plane Calibrations

    Get PDF
    A fabrication process is reported for prototype emitters of THz radiation, which operate cryogenically, and should provide a fast, stable blackbody source suitable for characterization of THz devices. The fabrication has been demonstrated and, at the time of this reporting, testing was underway. The emitter is similar to a monolithic silicon bolometer in design, using both a low-noise thermometer and a heater element on a thermally isolated stage. An impedance-matched, high-emissivity coat ing is also integrated to tune the blackbody properties. This emitter is designed to emit a precise amount of power as a blackbody spectrum centered on terahertz frequencies. The emission is a function of the blackbody temperature. An integrated resistive heater and thermometer system can control the temperature of the blackbody with greater precision than previous incarnations of calibration sources that relied on blackbody emission. The emitter is fabricated using a silicon- on-insulator substrate wafer. The buried oxide is chosen to be less than 1 micron thick, and the silicon device thickness is 1-2 microns. Layers of phosphorus compensated with boron are implanted into and diffused throughout the full thickness of the silicon device layer to create the thermometer and heater components. Degenerately doped wiring is implanted to connect the devices to wire-bondable contact pads at the edge of the emitter chip. Then the device is micromachined to remove the thick-handle silicon behind the thermometer and heater components, and to thermally isolate it on a silicon membrane. An impedance- matched emissive coating (ion assisted evaporated Bi) is applied to the back of the membrane to enable high-efficiency emission of the blackbody spectrum

    A Three-Step Synthesis of Fluoxetine

    Get PDF
    Fluoxetine is the active ingredient in the antidepressant Prozac. It works as a selective serotonin reuptake inhibitor to treat conditions including depression and obsessive-compulsive disorder. To assemble this molecule, a three-step synthesis was utilized. Intermediates included 1-Propanone, 3-(methylamino)-1-phenyl-(synthesized through an SN2 reaction between 3-Chloropropiophenone and methylamine) and α-[2-(Methylamino) ethyl] benzyl alcohols (synthesized through reduction of the first intermediate using NaBH4). The second intermediate was subjected to 4-chlorobenzotrifluoride and sodium hydride to produce the desired molecule, fluoxetine. In order to make the synthesis more green, the solvent for the second reaction, ethanol, was replaced with water. Over the course of this multi-stage procedure, several synthetic difficulties led to the formation of unexpected products

    Multicolor Detectors for Ultrasensitive Long-Wave Imaging Cameras

    Get PDF
    A document describes a zeptobolometer for ultrasensitive, long-wavelength sensors. GSFC is developing pixels based on the zeptobolometer design that sense three THz wavelengths simultaneously. Two innovations are described in the document: (1) a quasiparticle (QO) filter arrangement that enables a compact multicolor spectrum at the focal plane, and (2) a THz antenna readout by up to three bolometers. The innovations enable high efficiency by greatly reducing high, frequency-dependent microstrip losses, and pixel compactness by eliminating the need for bulky filters in the focal plane. The zeptobolometer is a small TES bolometer, on the scale of a few microns, which can be readily coupled through an impedance-matching resistor to a metal or dielectric antenna. The bolometer is voltage-biased in its superconducting transition, allowing the use of superconducting RF multiplexers to read out large arrays. The antenna is geometrically tapped at three locations so as to efficiently couple radiation of three distinct wavelengths to the individual TESs. The transition edge hot electrons in metals offer a simple, compact arrangement for antenna readout, which can be crucial in the THz where line losses at high frequencies can be substantial. A metallic grill filter acts as a high-pass filter and directs the low-frequency components to a location where they will be absorbed. The absorption spectrum shows that three well-separated THz bands are feasible. The filters can be made from high-purity dielectrics such as float zone silicon or sapphire

    “Greening up”: A Multistep Synthetic Transformation

    Get PDF
    Green Chemistry is an experimental design theory that aims to reduce the use and generation of hazardous substances in order to address problems we face in the world today like water contamination, global warming, ozone depletion, and pollution. When hazardous substances are replaced with less hazardous substances, both risk and cost can be reduced. Teaching the importance and relevance of green chemistry is imperative to the future of chemistry and the environment. Since most useful organic chemical targets require more than one synthetic step, it is important that undergraduate organic chemistry students be exposed to labs that require multiple transformations. This will allow students to understand how reactions work after observing them first-hand. Additionally, since the ‘traditional’ synthesis of most chemical substances utilizes solvents, reagents, and conditions that are harmful and hazardous to the environment, students had to propose their own green alternatives by completing a 3-step synthesis and determining a greener route. The products were purified, characterized and then a metric system was used to compare the greenness of the reactions. A reaction was considered more green if there were relative decreases in the combination of factors that include cost, environmental toxicity, and waste produced. In total, 22 different targets were attempted to be synthesized

    Variable-delay Polarization Modulators for Cryogenic Millimeter-wave Applications

    Get PDF
    We describe the design, construction, and initial validation of the variable-delay polarization modulator (VPM) designed for the PIPER cosmic microwave background polarimeter. The VPM modulates between linear and circular polarization by introducing a variable phase delay between orthogonal linear polarizations. Each VPM has a diameter of 39 cm and is engineered to operate in a cryogenic environment (1.5 K). We describe the mechanical design and performance of the kinematic double-blade flexure and drive mechanism along with the construction of the high precision wire grid polarizers.Comment: 8 pages, 10 Figures, Submitted to Review of Scientific Instrument

    Correlations in the (Sub)Mil1imeter Background from ACT x BLAST

    Get PDF
    We present measurements of the auto- and cross-frequency correlation power spectra of the cosmic (sub)millimeter background at: 250, 350, and 500 microns (1200, 860, and 600 GHz) from observations made with the Balloon-borne Large Aperture Submillimeter Telescope, BLAST; and at 1380 and 2030 microns (218 and 148 GHz) from observations made with the Atacama Cosmology Telescope, ACT. The overlapping observations cover 8.6 deg(sup 2) in an area relatively free of Galactic dust near the south ecliptic pole (SEP). The ACT bands are sensitive to radiation from the CMB, the Sunyaev-Zel'dovich (SZ) effect from galaxy clusters, and to emission by radio and dusty star-forming galaxies (DSFGs), while the dominant contribution to the BLAST bands is from DSFGs. We confirm and extend the BLAST analysis of clustering with an independent pipeline, and also detect correlations between the ACT and BLAST maps at over 25(sigma) significance, which we interpret as a detection of the DSFGs in the ACT maps. In addition to a Poisson component in the cross-frequency power spectra, we detect a clustered signal at 4(sigma), and using a model for the DSFG evolution and number counts, we successfully fit all our spectra with a linear clustering model and a bias that depends only on red shift and not on scale. Finally, the data are compared to, and generally agree with, phenomenological models for the DSFG population. This study represents a first of its kind, and demonstrates the constraining power of the cross-frequency correlation technique to constrain models for the DSFGs. Similar analyses with more data will impose tight constraints 011 future models

    Infrared Dielectric Properties of Low-stress Silicon Nitride

    Get PDF
    Silicon nitride thin films play an important role in the realization of sensors, filters, and high-performance circuits. Estimates of the dielectric function in the far- and mid-IR regime are derived from the observed transmittance spectra for a commonly employed low-stress silicon nitride formulation. The experimental, modeling, and numerical methods used to extract the dielectric parameters with an accuracy of approximately 4% are presented

    Application of Asymmetric IRT Modeling to Discrete-Option Multiple-Choice Test Items

    Get PDF
    Asymmetric IRT models have been shown useful for capturing heterogeneity in the number of latent subprocesses underlying educational test items (Lee and Bolt, 2018a). One potentially useful practical application of such models is toward the scoring of discrete-option multiple-choice (DOMC) items. Under the DOMC format, response options are independently and randomly administered up to the (last) keyed response, and thus the scheduled number of distractor response options to which an examinee may be exposed (and consequently the overall difficulty of the item) can vary. In this paper we demonstrate the applicability of Samejima's logistic positive exponent (LPE) model to response data from an information technology certification test administered using the DOMC format, and discuss its advantages relative to a two-parameter logistic (2PL) model in addressing such effects. Application of the LPE in the context of DOMC items is shown to (1) provide reduced complexity and a superior comparative fit relative to the 2PL, and (2) yield a latent metric with reduced shrinkage at high proficiency levels. The results support the potential use of the LPE as a basis for scoring DOMC items so as to account for effects related to key location

    Compact Radiative Control Structures for Millimeter Astronomy

    Get PDF
    We have designed, fabricated, and tested compact radiative control structures, including antireflection coatings and resonant absorbers, for millimeter through submillimeter wave astronomy. The antireflection coatings consist of micromachined single crystal silicon dielectric sub-wavelength honeycombs. The effective dielectric constant of the structures is set by the honeycomb cell geometry. The resonant absorbers consist of pieces of solid single crystal silicon substrate and thin phosphorus implanted regions whose sheet resistance is tailored to maximize absorption by the structure. We present an implantation model that can be used to predict the ion energy and dose required for obtaining a target implant layer sheet resistance. A neutral density filter, a hybrid of a silicon dielectric honeycomb with an implanted region, has also been fabricated with this basic approach. These radiative control structures are scalable and compatible for use large focal plane detector arrays
    corecore