6,057 research outputs found
Influence of dietary linoleic acid intake with different fat intakes on arachidonic acid concentrations in plasma and platelet lipids and eicosanoid biosynthesis in female volunteers
Background/Aim: N-6 fatty acids are considered to promote diseases prevalent in industrialized countries and characterized by an increased eicosanoid biosynthesis from arachidonic acid (AA). We investigated the impact of the linoleic acid (LA) intake on AA levels in humans. Methods: Six healthy female volunteers (age range 2334 years) were given liquid formula diets (LFD) devoid of AA for 6 weeks, providing a constant intake of zero energy% (LFD 0: protein 15%, carbohydrates 85%) or 20 energy% (LFD 20: protein 15%, carbohydrates 55%, fat 30%) LA, for 3 weeks each. Fatty acids of plasma cholesteryl esters and platelet lipids were determined each week, and the prostaglandin biosynthesis was measured in 24-hour urine samples. Results: LFD 0 increased (+31% of initial value) and LFD 20 lowered (-30% of initial value) the percentage of AA in plasma cholesteryl esters and platelet lipids. Moreover, absence of dietary AA lowered the percentages of AA in plasma (-31% week 0 vs. week 6) and platelet (-11%) lipids, indicating a low transformation of LA. LFD 0 reduced urinary metabolite levels of prostaglandins D, E, and F in 24-hour urine samples (-48%, p < 0.001) within 24 h, but did not significantly affect platelet aggregation (-10%) and thromboxane formation (-25%). LFD 20 significantly lowered platelet aggregation (-25%) and thromboxane formation (-43%). The prostaglandin metabolite levels increased during the first 10 days, declined thereafter, and were lower than the preexperimental values at the end of the 3-week period. Conclusions: The results show that dietary LA does not increase the AA levels in plasma or platelet lipids and does not persistently contribute to prostaglandin biosynthesis which is increased by AA intake with Western diets
Two-fluid tokamak equilibria with reversed magnetic shear and sheared flow
The aim of the present work is to investigate tokamak equilibria with
reversed magnetic shear and sheared flow, which may play a role in the
formation of internal transport barriers (ITBs), within the framework of
two-fluid model. The study is based on exact self-consistent solutions in
cylindrical geometry by means of which the impact of the magnetic shear, s, and
the "toroidal" (axial) and "poloidal" (azimuthal) ion velocity components on
the radial electric field, its shear and the shear of the ExB velocity is
examined. For a wide parametric regime of experimental concern it turns out
that the contributions of the toroidal and poloidal velocity and pressure
gradient terms to the electric field, its shear and ExB velocity shear are of
the same order of magnitude. The impact of s on ExB velocity shear through the
pressure gradient term is stronger than that through the velocity terms. The
results indicate that, alike MHD, the magnetic shear and the sheared toroidal
and poloidal velocities act synergetically in producing electric fields and
therefore ExB velocity shear profiles compatible with ones observed in
discharges with ITBs; owing to the pressure gadient term, however, the impact
of s on the electic field, its shear and the shear of ExB velocity is stronger
than that in MHD.Comment: 25 pages, 21 figure
Nonlinear closures for scale separation in supersonic magnetohydrodynamic turbulence
Turbulence in compressible plasma plays a key role in many areas of
astrophysics and engineering. The extreme plasma parameters in these
environments, e.g. high Reynolds numbers, supersonic and super-Alfvenic flows,
however, make direct numerical simulations computationally intractable even for
the simplest treatment -- magnetohydrodynamics (MHD). To overcome this problem
one can use subgrid-scale (SGS) closures -- models for the influence of
unresolved, subgrid-scales on the resolved ones. In this work we propose and
validate a set of constant coefficient closures for the resolved, compressible,
ideal MHD equations. The subgrid-scale energies are modeled by Smagorinsky-like
equilibrium closures. The turbulent stresses and the electromotive force (EMF)
are described by expressions that are nonlinear in terms of large scale
velocity and magnetic field gradients. To verify the closures we conduct a
priori tests over 137 simulation snapshots from two different codes with
varying ratios of thermal to magnetic pressure () and sonic Mach numbers (). Furthermore, we make a
comparison to traditional, phenomenological eddy-viscosity and
closures. We find only mediocre performance of the
kinetic eddy-viscosity and closures, and that the
magnetic eddy-viscosity closure is poorly correlated with the simulation data.
Moreover, three of five coefficients of the traditional closures exhibit a
significant spread in values. In contrast, our new closures demonstrate
consistently high correlation and constant coefficient values over time and and
over the wide range of parameters tested. Important aspects in compressible MHD
turbulence such as the bi-directional energy cascade, turbulent magnetic
pressure and proper alignment of the EMF are well described by our new
closures.Comment: 15 pages, 6 figures; to be published in New Journal of Physic
Dualizability of automatic algebras
We make a start on one of George McNulty's Dozen Easy Problems: "Which finite
automatic algebras are dualizable?" We give some necessary and some sufficient
conditions for dualizability. For example, we prove that a finite automatic
algebra is dualizable if its letters act as an abelian group of permutations on
its states. To illustrate the potential difficulty of the general problem, we
exhibit an infinite ascending chain of finite automatic algebras that are alternately dualizable and
non-dualizable
The small-scale dynamo: Breaking universality at high Mach numbers
(Abridged) The small-scale dynamo may play a substantial role in magnetizing
the Universe under a large range of conditions, including subsonic turbulence
at low Mach numbers, highly supersonic turbulence at high Mach numbers and a
large range of magnetic Prandtl numbers Pm, i.e. the ratio of kinetic viscosity
to magnetic resistivity. Low Mach numbers may in particular lead to the
well-known, incompressible Kolmogorov turbulence, while for high Mach numbers,
we are in the highly compressible regime, thus close to Burgers turbulence. In
this study, we explore whether in this large range of conditions, a universal
behavior can be expected. Our starting point are previous investigations in the
kinematic regime. Here, analytic studies based on the Kazantsev model have
shown that the behavior of the dynamo depends significantly on Pm and the type
of turbulence, and numerical simulations indicate a strong dependence of the
growth rate on the Mach number of the flow. Once the magnetic field saturates
on the current amplification scale, backreactions occur and the growth is
shifted to the next-larger scale. We employ a Fokker-Planck model to calculate
the magnetic field amplification during the non-linear regime, and find a
resulting power-law growth that depends on the type of turbulence invoked. For
Kolmogorov turbulence, we confirm previous results suggesting a linear growth
of magnetic energy. For more general turbulent spectra, where the turbulent
velocity v_t scales with the characteristic length scale as u_\ell\propto
\ell^{\vartheta}, we find that the magnetic energy grows as
(t/T_{ed})^{2\vartheta/(1-\vartheta)}, with t the time-coordinate and T_{ed}
the eddy-turnover time on the forcing scale of turbulence. For Burgers
turbulence, \vartheta=1/2, a quadratic rather than linear growth may thus be
expected, and a larger timescale until saturation is reached.Comment: 10 pages, 3 figures, 2 tables. Accepted at New Journal of Physics
(NJP
Low-metallicity star formation: Relative impact of metals and magnetic fields
Low-metallicity star formation poses a central problem of cosmology, as it
determines the characteristic mass scale and distribution for the first and
second generations of stars forming in our Universe. Here, we present a
comprehensive investigation assessing the relative impact of metals and
magnetic fields, which may both be present during low-metallicity star
formation. We show that the presence of magnetic fields generated via the
small-scale dynamo stabilises the protostellar disc and provides some degree of
support against fragmentation. In the absence of magnetic fields, the
fragmentation timescale in our model decreases by a factor of ~10 at the
transition from Z=0 to Z>0, with subsequently only a weak dependence on
metallicity. Similarly, the accretion timescale of the cluster is set by the
large-scale dynamics rather than the local thermodynamics. In the presence of
magnetic fields, the primordial disc can become completely stable, therefore
forming only one central fragment. At Z>0, the number of fragments is somewhat
reduced in the presence of magnetic fields, though the shape of the mass
spectrum is not strongly affected in the limits of the statistical
uncertainties. The fragmentation timescale, however, increases by roughly a
factor of 3 in the presence of magnetic fields. Indeed, our results indicate
comparable fragmentation timescales in primordial runs without magnetic fields
and Z>0 runs with magnetic fields.Comment: MNRAS in pres
Vector-axialvector mixing from a chiral effective field theory at finite temperature
We study the vector-axialvector mixing in a hot medium and its evolution
toward the chiral phase transition using different symmetry restoration
scenarios based on the generalized hidden local symmetry framework. We show
that the presence of the meson reduces the vector spectral function
around meson mass and enhances it around meson mass. The coupling
strength of to and vanishes at the critical temperature due
to the degenerate - masses. This feature holds rigorously in the
chiral limit and still stays intact to good approximation for the physical pion
mass.Comment: v2:11 pages, 6 figures, reorganized and expanded the text, new plots
and references added, main result and conclusions unchange
New Renormalization Group Equations and the Naturalness Problem
Looking for an observable manifestation of the so-called unnaturalness of
scalar fields we introduce a seemingly new set of differential equations for
connected Green functions. These equations describe the momentum dependence of
the Green functions and are close relatives to the previously known
renormalization group equations. Applying the new equations to the theory of
scalar field with interaction we identify a relation between the
four-point Green function and the propagator which expresses the unnaturalness
of the scalar field. Possible manifestations of the unnaturalness at low
momenta are briefly discussed.Comment: 12 revtex pages; a coefficient has been corrected in eq. (34), four
new references added; final version to appear in Phys. Rev.
Complete lung ultrasound using liquid filling: a review of methods regarding sonographic findings and clinical relevance
(200w) Lung ultrasound (LUS) is widely used for the diagnosis of pulmonary diseases such
as solid nodules and consolidations in contact with the pleural cavity. However, sonography for
processes of central disease remains impaired due to total sound reflection at the air tissue interfaces
in the ventilated lung. These acoustic barriers can be overcome by replacing intra-alveolar air with
liquid. Such filling has been reported using perfluorocarbon, saline or emulsions out of those. In order
to achieve acoustic access enabling the use of LUS, complete gas free content is required. Such
lung tissue - liquid compound will have untypical physical properties that might impact upon the
sonographic visualization of central structures. Up to now, the filling of the lung has been reported
for very specific applications and not classified regarding their sonographic findings. This work
was therefore motivated to review the literature for methods of lung liquid instillation, classifying
their methodological strength and limitations for achieving acoustic access and sonographic findings.
Finally, their use for ultrasound based clinical applications will be discussed and the need for research
will be outlined
- …