27 research outputs found

    The risk of contralateral breast cancer in patients from BRCA1/2 negative high risk families as compared to patients from BRCA1 or BRCA2 positive families: a retrospective cohort study

    Get PDF
    Introduction: While it has been reported that the risk of contralateral breast cancer in patients from BRCA1 or BRCA2 positive families is elevated, little is known about contralateral breast cancer risk in patients from high risk families that tested negative for BRCA1/2 mutations. Methods: A retrospective, multicenter cohort study was performed from 1996 to 2011 and comprised 6,235 women with unilateral breast cancer from 6,230 high risk families that had tested positive for BRCA1 (n = 1,154) or BRCA2 (n = 575) mutations or tested negative (n = 4,501). Cumulative contralateral breast cancer risks were calculated using the Kaplan-Meier product-limit method and were compared between groups using the log-rank test. Cox regression analysis was applied to assess the impact of the age at first breast cancer and the familial history stratified by mutation status. Results: The cumulative risk of contralateral breast cancer 25 years after first breast cancer was 44.1% (95%CI, 37.6% to 50.6%) for patients from BRCA1 positive families, 33.5% (95%CI, 22.4% to 44.7%) for patients from BRCA2 positive families and 17.2% (95%CI, 14.5% to 19.9%) for patients from families that tested negative for BRCA1/2 mutations. Younger age at first breast cancer was associated with a higher risk of contralateral breast cancer. For women who had their first breast cancer before the age of 40 years, the cumulative risk of contralateral breast cancer after 25 years was 55.1% for BRCA1, 38.4% for BRCA2, and 28.4% for patients from BRCA1/2 negative families. If the first breast cancer was diagnosed at the age of 50 or later, 25-year cumulative risks were 21.6% for BRCA1, 15.5% for BRCA2, and 12.9% for BRCA1/2 negative families. Conclusions: Contralateral breast cancer risk in patients from high risk families that tested negative for BRCA1/2 mutations is similar to the risk in patients with sporadic breast cancer. Thus, the mutation status should guide decision making for contralateral mastectomy

    Destruction with a box. Substrate recognition by the anaphase-promoting complex.

    No full text
    Destruction boxes mark cyclin B and other proteins degraded in mitosis for ubiquitination by the anaphase-promoting complex (APC/C). In a paper in this issue of Molecular Cell, Yamano et al. show that destruction boxes directly bind to the APC/C in a cell cycle-regulated manner. Interestingly, this interaction does not require APC/C activators of the Cdc20 family, which were thought to be essential for recruiting substrates to the APC/C

    The CCT chaperonin promotes activation of the anaphase-promoting complex through the generation of functional Cdc20.

    No full text
    The WD repeat protein Cdc20 is essential for progression through mitosis because it is required to activate ubiquitin ligation by the anaphase-promoting complex (APC/C). Here we show in yeast that Cdc20 binds to the CCT chaperonin, which is known as a folding machine for actin and tubulin. The CCT is required for Cdc20's ability to bind and activate the APC/C. In vivo, CCT is essential for Cdc20-dependent cell cycle events such as sister chromatid separation and exit from mitosis. The chaperonin is also required for the function of the Cdc20-related protein Cdh1, which activates the APC/C during G1. We propose that folding of the Cdc20 family of APC/C activators is an essential and evolutionary conserved function of the CCT chaperonin

    Spo13 Facilitates Monopolin Recruitment to Kinetochores and Regulates Maintenance of Centromeric Cohesion during Yeast Meiosis.

    No full text
    Background: Cells undergoing meiosis perform two consecutive divisions after a single round of DNA replication. During the first meiotic division, homologous chromosomes segregate to opposite poles. This is achieved by (1) the pairing of maternal and paternal chromosomes via recombination producing chiasmata, (2) coorientation of homologous chromosomes such that sister chromatids attach to the same spindle pole, and (3) resolution of chiasmata by proteolytic cleavage by separase of the meiotic-specific cohesin Rec8 along chromosome arms. Crucially, cohesin at centromeres is retained to allow sister centromeres to biorient at the second division. Little is known about how these meiosis I-specific events are regulated. Results: Here, we show that Spo13, a centromere-associated protein produced exclusively during meiosis I, is required to prevent sister kinetochore biorientation by facilitating the recruitment of the monopolin complex to kinetochores. Spo13 is also required for the reaccumulation of securin, the persistence of centromeric cohesin during meiosis II, and the maintenance of a metaphase I arrest induced by downregulation of the APC/C activator CDC20. Conclusion: Spo13 is a key regulator of several meiosis I events. The presence of Spo13 at centromere-surrounding regions is consistent with the notion that it plays a direct role in both monopolin recruitment to centromeres during meiosis I and maintenance of centromeric cohesion between the meiotic divisions. Spo13 may also limit separase activity after the first division by ensuring securin reaccumulation and, in doing so, preventing precocious removal from chromatin of centromeric cohesin
    corecore