188 research outputs found

    Alternative Exercise Technologies to Fight against Sarcopenia at Old Age: A Series of Studies and Review

    Get PDF
    The most effective physiologic mean to prevent sarcopenia and related muscle malfunction is a physically active lifestyle, or even better, physical exercise. However, due to time constraints, lack of motivation, or physical limitations, a large number of elderly subjects are either unwilling or unable to perform conventional workouts. In this context, two new exercise technologies, whole-body vibration (WBV) and whole-body electromyostimulation (WB-EMS), may exhibit a save, autonomous, and efficient alternative to increase or maintain muscle mass and function. Regarding WB-EMS, the few recent studies indeed demonstrated highly relevant effects of this technology on muscle mass, strength, and power parameters at least in the elderly, with equal or even higher effects compared with conventional resistance exercise. On the contrary, although the majority of studies with elderly subjects confirmed the positive effect of WBV on strength and power parameters, a corresponding relevant effect on muscle mass was not reported. However, well-designed studies with adequate statistical power should focus more intensely on this issue

    Impact of 3 months of detraining after high intensity exercise on menopause-related symptoms in early postmenopausal women – results of the randomized controlled actlife project

    Get PDF
    Regular exercise might reduce postmenopausal symptoms, however even short-moderate periods of absence from exercise training might significantly reduce these positive effects. The aim of the study was thus to determine detraining effects on postmenopausal symptoms after a 3-month detraining period in early post-menopausal women. After 13 months, the exercise group (EG: n = 27; 54.6 ± 2.0; 23.6 ± 3.3 kg/m2) had to abruptly stop their supervised, facility-based, high intensity aerobic and resistance group exercise conducted three times per week due to the COVID-19 pandemic and the corresponding lockdown of all training facilities in Germany. In parallel, the control group (CG: n = 27; 55.6 ± 1.6 years, 25.2 ± 5.2 kg/m2) had to terminate their low-intensity exercise program performed once per week. Study endpoint as determined after 3 months of detraining was menopausal symptoms as determined by the Menopausal Rating Scale II (MRS II). The intention to treat principle with multiple imputation was applied. After 13 months of intense multicomponent exercise and significant exercise-induced effects on menopausal symptoms, a further 3 months of detraining resulted in non-significant deteriorations (p = .106) in the exercise group, while non-significant improvements were observed in the control group (p = .180). Corresponding group differences were significant (p = .036) after detraining. Of importance, self-reported individual outdoor activities increased by about 40% in both groups during the three-month lock-down period. Three months of absence from a supervised high-intensity group exercise protocol resulted in detraining effects on postmenopausal symptoms even when outdoor physical activity was increased significantly. Trial registration numberClinicalTrials.gov: NCT0395999

    Effects of whole-body electromyostimulation with different impulse intensity on blood pressure changes in hyper- and normotensive overweight people. A pilot study

    Get PDF
    Hypertension is a frequent condition in untrained middle-aged to older adults, who form the core group of whole-body electromyostimulation (WB-EMS) applicants. So far, the acute effects of varying impulse intensities on blood pressure responses have not been evaluated in normo- and hypertensive people. Thirteen hypertensive and twelve normotensive overweight WB-EMS novices, 40–70 years old, conducted the same WB-EMS protocol (20 min, bipolar, 85 Hz, 350 µs, 4 s impulse-4 s rest; combined with easy movements) with increasing impulse intensity (low, moderate, advanced) per session. Mean arterial blood pressure (MAP) as determined by automatic sphygmomanometry rose significantly (p < .001) from rest, 5 min pre-WB-EMS to immediately pre-WB-EMS assessment. Of importance, a 20-min WB-EMS application does not increase MAP further. In detail, maximum individual MAP does not exceed 128 mmHg (177 mmHg systolic or 110 mmHg diastolic) in any case. Two-min post-WB-EMS, MAP was significantly lower (p = .016) compared to immediately pre-WB-EMS. In contrast, heart rate increased significantly from immediately pre to immediately post-exercise (p < .001), though individual peak values did not exceed 140 beats/min−1 and heart rate decreased rapidly (p < .001) post-exercise. No significant differences in MAP and HR kinetics were observed for impulse intensity categories or hypertensive status. In summary, largely independently of impulse intensity and status, the acute effect of WB-EMS on MAP in novice applicants seem to be largely negligible. Although definite evidence might not have been provided by the present study, we conclude that hypertension, at least under treatment, should not be considered as a barrier for WB-EMS application in moderately old or older cohorts

    Sexual dysfunction in first-episode schizophrenia patients: results from European First Episode Schizophrenia Trial

    Get PDF
    Sexual dysfunctions (SDs) occur frequently in schizophrenia patients and have a huge impact on quality of life and compliance. They are often associated with antipsychotic medication. Nicotine consumption, negative or depressive symptoms, and physical illness are also discussed as contributing factors. Data on SD in first-episode schizophrenia patients are scarce.As part of the European First Episode Schizophrenia Trial, first-episode schizophrenia patients were randomly assigned to 5 medication groups. We assessed SD by analyzing selected items from the Udvalg for Kliniske Undersugelser at baseline and at 5 following visits.Differences between antipsychotics were small for all SDs, and fairly little change in the prevalence of SDs was seen over the course of the study. A significantly larger increase of amenorrhea and galactorrhea was seen with amisulpride than with the other medications. In men, higher age, more pronounced Positive and Negative Syndrome Scale general psychopathology symptoms, and higher plasma prolactin levels predicted higher rates of erectile and ejaculatory dysfunctions. Positive and Negative Syndrome Scale negative symptoms and higher age were predictors for decreased libido.In women, higher prolactin plasma levels were identified as a predictor of amenorrhea. Positive and Negative Syndrome Scale negative symptoms predicted decreased libido.All evidence taken together underscores the influence of the disease schizophrenia itself on sexual functioning. In addition, there is a strong correlation between the prolactin-increasing properties of amisulpride and menstrual irregularities

    Changes of Maximum Leg Strength Indices During Adulthood a Cross-Sectional Study With Non-athletic Men Aged 19–91

    Get PDF
    Age-related loss of muscle mass and function, also called sarcopenia, was recently added to the ICD-10 as an independent condition. However, declines in muscle mass and function are inevitable during the adulthood aging process. Concerning muscle strength as a crucial aspect of muscle function, maximum knee extension strength might be the most important physical parameter for independent living in the community. In this study, we aimed to determine the age-related decline in maximum isokinetic knee extension (MIES) and flexion strength (MIFS) in adult men. The primary study hypothesis was that there is a slight gradual decrease of MIES up to ≈age 60 years with a significant acceleration of decline after this “changepoint.” We used a closed kinetic chain system (leg-press), which is seen as providing functionally more relevant results on maximum strength, to determine changes in maximum isokinetic hip/leg extensor (MIES) and flexor strength (MIFS) during adulthood in men. Apart from average annual changes, we aimed to identify whether the decline in maximum lower extremity strength is linear. MIES and MIFS data determined by an isokinetic leg-press of 362 non-athletic, healthy, and community-dwelling men 19–91 years old were included in the analysis. A changepoint analysis was conducted based on a multiple regression analysis adjusted for selected co-variables that might confound the proper relationship between age and maximum strength. In summary, maximum isokinetic leg-strength decline during adulthood averaged around 0.8–1.0% p.a.; however, the reduction was far from linear. MIES demonstrated a non-significant reduction of 5.2 N/p.a. (≈0.15% p.a.) up to the estimated breakpoint of 52.0 years and an accelerated loss of 44.0 N/p.a. (≈1.3% p.a.; p < 0.001). In parallel, the decline in MIFS (10.0 N/p.a.; ≈0.5% p.a.) prior to the breakpoint at age 59.0 years was significantly more pronounced. Nevertheless, we observed a further marked accelerated loss of MIFS (25.0 N/p.a.; ≈1.3% p.a.) in men ≥60 years. Apart from the “normative value” and closed kinetic chain aspect of this study, the practical application of our results suggests that sarcopenia prophylaxis in men should be started in the 5th decade in order to address the accelerated muscle decline of advanced age

    Detraining Effects on Musculoskeletal Parameters in Early Postmenopausal Osteopenic Women: 3-Month Follow-Up of the Randomized Controlled ACTLIFE Study

    Get PDF
    Periods of absence from supervised group exercise while maintaining physical activity might be a frequent pattern in adults’ exercise habits. The aim of the present study was to determine detraining effects on musculoskeletal outcomes after a 3-month detraining period in early post-menopausal, osteopenic women. Due to the COVID-19 pandemic, we terminated the 18-month randomized controlled ACTLIFE exercise intervention immediately after the 13-month follow-up assessment. This put an abrupt stop to the high-intensity aerobic and resistance group exercise sessions undertaken three times per week by the exercise group (EG: n = 27) and the gentle exercise program performed once per week for the attention control group (CG: n = 27); but both groups were permitted to conduct individual outdoor activity for the 3-month lock-down period. Study endpoints were lean body mass (LBM), bone mineral density (BMD) at the lumbar spine (LS), maximum hip-/leg extension strength and power. Detraining-induced reductions of LBM, hip/leg strength and power (but not BMD-LS) were significantly greater (p < 0.001 to p = 0.044) compared with the CG. Significant exercise effects, i.e. differences between EG and CG, present after 13 months of exercise, were lost after 3 months of detraining for LBM (p = 0.157) and BMD-LS (p = 0.065), but not for strength (p < 0.001) and power (p < 0.001). Of note, self-reported individual outdoor activities and exercise increased by about 40% in both groups during the lock-down period. Three months’ absence from a supervised group exercise protocol resulted in considerable detraining effects for musculoskeletal parameters. Thus, exercise programs for adults should be continuous rather than intermittent. Trial registration number: ClinicalTrials.gov: NCT04420806, 06.05.2020

    Position statement and updated international guideline for safe and effective whole-body electromyostimulation training-the need for common sense in WB-EMS application

    Get PDF
    Whole-Body Electromyostimulation (WB-EMS) is a training technology that enables simultaneous stimulation of all the main muscle groups with a specific impulse intensity for each electrode. The corresponding time-efficiency and joint-friendliness of WB-EMS may be particularly attractive for people unable or unmotivated to conduct (intense) conventional training protocols. However, due to the enormous metabolic and musculoskeletal impact of WB-EMS, particular attention must be paid to the application of this technology. In the past, several scientific and newspaper articles reported severe adverse effects of WB-EMS. To increase the safety of commercial non-medical WB-EMS application, recommendations "for safe and effective whole-body electromyostimulation" were launched in 2016. However, new developments and trends require an update of these recommendations to incorporate more international expertise with demonstrated experience in the application of WB-EMS. The new version of these consensus-based recommendations has been structured into 1) "general aspects of WB-EMS", 2) "preparation for training", recommendations for the 3) "WB-EMS application" itself and 4) "safety aspects during and after training". Key topics particularly addressed are 1) consistent and close supervision of WB-EMS application, 2) mandatory qualification of WB-EMS trainers, 3) anamnesis and corresponding consideration of contraindications prior to WB-EMS, 4) the participant's proper preparation for the session, 5) careful preparation of the WB-EMS novice, 6) appropriate regeneration periods between WB-EMS sessions and 7) continuous interaction between trainer and participant at a close physical distance. In summary, we are convinced that the present guideline will contribute to greater safety and effectiveness in the area of non-medical commercial WB-EMS application

    Effects of an Impulse Frequency Dependent 10-Week Whole-body Electromyostimulation Training Program on Specific Sport Performance Parameters

    Get PDF
    The difference in the efficacy of altered stimulation parameters in whole-body-electromyostimulation (WB-EMS) training remains largely unexplored. However, higher impulse frequencies (>50 Hz) might be most adequate for strength gain. The aim of this study was to analyze potential differences in sports-related performance parameters after a 10-week WB-EMS training with different frequencies. A total of 51 untrained participants (24.9 ± 3.9 years, 174 ± 9 cm, 72.4 ± 16.4 kg, BMI 23.8 ± 4.1, body fat 24.7 ± 8.1 %) was randomly divided into three groups: one inactive control group (CON) and two training groups. They completed a 10-week WB-EMS program of 1.5 sessions/week, equal content but different stimulation frequencies (training with 20 Hz (T20) vs. training with 85 Hz (T85)). Before and after intervention, all participants completed jumping (Counter Movement Jump (CMJ), Squat Jump (SJ), Drop Jump (DJ)), sprinting (5m, 10m, 30m), and strength tests (isometric trunk flexion/extension). One-way ANOVA was applied to calculate parameter changes. Post-hoc least significant difference tests were performed to identify group differences. Significant differences were identified for CMJ (p = 0.007), SJ (p = 0.022), trunk flexion (p = 0.020) and extension (p=.013) with significant group differences between both training groups and CON (not between the two training groups T20 and T85). A 10-week WB-EMS training leads to significant improvements of jump and strength parameters in untrained participants. No differences could be detected between the frequencies. Therefore, both stimulation frequencies can be regarded as adequate for increasing specific sport performance parameters. Further aspects as regeneration or long term effects by the use of different frequencies still need to be clarified
    corecore