66 research outputs found
Blood Metabolomic Profiling Confirms and Identifies Biomarkers of Food Intake
Metabolomics can be a tool to identify dietary biomarkers. However, reported food-metabolite associations have been inconsistent, and there is a need to explore further associations. Our aims were to confirm previously reported food-metabolite associations and to identify novel food-metabolite associations. We conducted a cross-sectional analysis of data from 849 participants (57% men) of the PopGen cohort. Dietary intake was obtained using FFQ and serum metabolites were profiled by an untargeted metabolomics approach. We conducted a systematic literature search to identify previously reported food-metabolite associations and analyzed these associations using linear regression. To identify potential novel food-metabolite associations, datasets were split into training and test datasets and linear regression models were fitted to the training datasets. Significant food-metabolite associations were evaluated in the test datasets. Models were adjusted for covariates. In the literature, we identified 82 food-metabolite associations. Of these, 44 associations were testable in our data and confirmed associations of coffee with 12 metabolites, of fish with five, of chocolate with two, of alcohol with four, and of butter, poultry and wine with one metabolite each. We did not identify novel food-metabolite associations; however, some associations were sex-specific. Potential use of some metabolites as biomarkers should consider sex differences in metabolism
Multi-omic signature of body weight change: results from a population-based cohort study
BACKGROUND: Excess body weight is a major risk factor for cardiometabolic diseases. The complex molecular mechanisms of body weight change-induced metabolic perturbations are not fully understood. Specifically, in-depth molecular characterization of long-term body weight change in the general population is lacking. Here, we pursued a multi-omic approach to comprehensively study metabolic consequences of body weight change during a seven-year follow-up in a large prospective study. METHODS: We used data from the population-based Cooperative Health Research in the Region of Augsburg (KORA) S4/F4 cohort. At follow-up (F4), two-platform serum metabolomics and whole blood gene expression measurements were obtained for 1,631 and 689 participants, respectively. Using weighted correlation network analysis, omics data were clustered into modules of closely connected molecules, followed by the formation of a partial correlation network from the modules. Association of the omics modules with previous annual percentage weight change was then determined using linear models. In addition, we performed pathway enrichment analyses, stability analyses, and assessed the relation of the omics modules with clinical traits. RESULTS: Four metabolite and two gene expression modules were significantly and stably associated with body weight change (P-values ranging from 1.9 × 10−4 to 1.2 × 10−24). The four metabolite modules covered major branches of metabolism, with VLDL, LDL and large HDL subclasses, triglycerides, branched-chain amino acids and markers of energy metabolism among the main representative molecules. One gene expression module suggests a role of weight change in red blood cell development. The other gene expression module largely overlaps with the lipid-leukocyte (LL) module previously reported to interact with serum metabolites, for which we identify additional co-expressed genes. The omics modules were interrelated and showed cross-sectional associations with clinical traits. Moreover, weight gain and weight loss showed largely opposing associations with the omics modules. CONCLUSIONS: Long-term weight change in the general population globally associates with serum metabolite concentrations. An integrated metabolomics and transcriptomics approach improved the understanding of molecular mechanisms underlying the association of weight gain with changes in lipid and amino acid metabolism, insulin sensitivity, mitochondrial function as well as blood cell development and function
Induction of Noxa-Mediated Apoptosis by Modified Vaccinia Virus Ankara Depends on Viral Recognition by Cytosolic Helicases, Leading to IRF-3/IFN-β-Dependent Induction of Pro-Apoptotic Noxa
Viral infection is a stimulus for apoptosis, and in order to sustain viral replication many viruses are known to carry genes encoding apoptosis inhibitors. F1L, encoded by the orthopoxvirus modified vaccinia virus Ankara (MVA) has a Bcl-2-like structure. An MVA mutant lacking F1L (MVAΔF1L) induces apoptosis, indicating that MVA infection activates and F1L functions to inhibit the apoptotic pathway. In this study we investigated the events leading to apoptosis upon infection by MVAΔF1L. Apoptosis largely proceeded through the pro-apoptotic Bcl-2 family protein Bak with some contribution from Bax. Of the family of pro-apoptotic BH3-only proteins, only the loss of Noxa provided substantial protection, while the loss of Bim had a minor effect. In mice, MVA preferentially infected macrophages and DCs in vivo. In both cell types wt MVA induced apoptosis albeit more weakly than MVAΔF1L. The loss of Noxa had a significant protective effect in macrophages, DC and primary lymphocytes, and the combined loss of Bim and Noxa provided strong protection. Noxa protein was induced during infection, and the induction of Noxa protein and apoptosis induction required transcription factor IRF3 and type I interferon signalling. We further observed that helicases RIG-I and MDA5 and their signalling adapter MAVS contribute to Noxa induction and apoptosis in response to MVA infection. RNA isolated from MVA-infected cells induced Noxa expression and apoptosis when transfected in the absence of viral infection. We thus here describe a pathway leading from the detection of viral RNA during MVA infection by the cytosolic helicase-pathway, to the up-regulation of Noxa and apoptosis via IRF3 and type I IFN signalling
Metabolite profiling reveals new insights into the regulation of serum urate in humans
Albrecht E, Waldenberger M, Krumsiek J, et al. Metabolite profiling reveals new insights into the regulation of serum urate in humans. Metabolomics. 2013;10(1):141-151.Serum urate, the final breakdown product of purine metabolism, is causally involved in the pathogenesis of gout, and implicated in cardiovascular disease and type 2 diabetes. Serum urate levels highly differ between men and women; however the underlying biological processes in its regulation are still not completely understood and are assumed to result from a complex interplay between genetic, environmental and lifestyle factors. In order to describe the metabolic vicinity of serum urate, we analyzed 355 metabolites in 1,764 individuals of the population-based KORA F4 study and constructed a metabolite network around serum urate using Gaussian Graphical Modeling in a hypothesis-free approach. We subsequently investigated the effect of sex and urate lowering medication on all 38 metabolites assigned to the network. Within the resulting network three main clusters could be detected around urate, including the well-known pathway of purine metabolism, as well as several dipeptides, a group of essential amino acids, and a group of steroids. Of the 38 assigned metabolites, 25 showed strong differences between sexes. Association with uricostatic medication intake was not only confined to purine metabolism but seen for seven metabolites within the network. Our findings highlight pathways that are important in the regulation of serum urate and suggest that dipeptides, amino acids, and steroid hormones are playing a role in its regulation. The findings might have an impact on the development of specific targets in the treatment and prevention of hyperuricemia
A multifunctional mouse model to study the role of Samd3
The capacity to develop immunological memory is a hallmark of the adaptive immune system. To investigate the role of Samd3 for cellular immune responses and memory development, we generated a conditional knock-out mouse including a fluorescent reporter and a huDTR cassette for conditional depletion of Samd3-expressing cells. Samd3 expression was observed in NK cells and CD8 T cells, which are known for their specific function against intracellular pathogens like viruses. After acute viral infections, Samd3 expression was enriched within memory precursor cells and the frequency of Samd3-expressing cells increased during the progression into the memory phase. Similarly, during chronic viral infections, Samd3 expression was predominantly detected within precursors of exhausted CD8 T cells that are critical for viral control. At the functional level however, Samd3-deficient CD8 T cells were not compromised in the context of acute infection with Vaccinia virus or chronic infection with Lymphocytic choriomeningitis virus. Taken together, we describe a novel multifunctional mouse model to study the role of Samd3 and Samd3-expressing cells. We found that Samd3 is specifically expressed in NK cells, memory CD8 T cells, and precursor exhausted T cells during viral infections, while the molecular function of this enigmatic gene remains further unresolved
Decreased Susceptibility of Mice to Infection with Listeria monocytogenes in the Absence of Interleukin-18▿
The induction of proinflammatory cytokines such as gamma interferon (IFN-γ) and tumor necrosis factor alpha is crucial for the early control of bacterial infections. Since interleukin-18 (IL-18) acts as a potent inducer of IFN-γ, it might play an important role in the induction of a protective immune response in listeriosis. We used a murine model of systemic Listeria monocytogenes infection to study the immune response to these intracellular bacteria in the absence of IL-18. For this purpose, IL-18-deficient mice and mice treated with anti-IL-18 neutralizing antibody were infected with L. monocytogenes, and their innate and adaptive immune responses were compared to those of control mice. Unexpectedly, we found that mice deficient in IL-18 were partially resistant to primary infection with L. monocytogenes. At day 3 after infection, the numbers of listeriae in the livers and spleens of control mice were up to 500 times higher than those in IL-18-deficient or anti-IL-18 antibody-treated mice. In addition, the level of proinflammatory cytokines was markedly reduced in IL-18-deficient mice. Enhanced resistance to L. monocytogenes infection in IL-18-deficient mice was accompanied by increased numbers of leukocytes and reduced apoptosis in the spleen 48 to 72 h after infection. In contrast, control and IL-18-deficient mice showed no significant differences in their abilities to mount a protective L. monocytogenes-specific T-cell response
Translation of Collagen Ultrastructure to Biomaterial Fabrication for Material Independent but Highly Efficient Topographic Immunomodulation
Supplement-free induction of cellular differentiation and polarization
solely through the topography of materials is an auspicious strategy but has so
far significantly lacked behind the efficiency and intensity of media-supplementation
based protocols. For immune cells, low intensity effects were achieved on
rhodent cells using standard technologically driven surface patterns and
scaffold geometries, but no effects could be achieved for human immune cells.
Consistent with the idea that 3D structural motives in the extracellular
matrix possess immunomodulatory capacity as part of the natural healing
process, we found that human monocyte-derived macrophages show a strong M2a
like pro-healing polarization when cultured on type I rat-tail collagen fibers
(hereafter termed "collagen I") but not on collagen I films. Therefore, we hypothesized that highly aligned nanofibrils also of synthetic
polymers, if packed into larger bundles in 3D topographical similarity to
native collagen I, would induce a localized macrophage polarization.
For the automated fabrication of such bundles in a 3D printing manner, we
pioneered the strategy of "Melt Electrofibrillation" by the
integration of flow directed polymer phase separation into Melt Electrowriting
and subsequent selective dissolution of the matrix polymer. This process yields
nano-fiber bundles with a remarkable structural similarity to native collagen I
fibers, particularly for medical grade polycaprolactone (PCL).
These biomimetic fibrillar structures indeed induced a pronounced
elongation of human monocyte-derived macrophages and unprecedentedly triggered
their M2-like polarization as efficiently as IL-4 cytokine treatment.
Our data evidence the
biological importance of human macrophage-elongation on collagen fibers and
pioneers a strategy to fabricate scaffolds that exploit this effect to drive
macrophage polarization through precise and biomimetic material design. </p
- …