3,140 research outputs found

    Theory and computation of higher gradient elasticity theories based on action principles

    Get PDF
    In continuum mechanics, there exists a unique theory for elasticity, which includes the first gradient of displacement. The corresponding generalization of elasticity is referred to as strain gradient elasticity or higher gradient theories, where the second and higher gradients of displacement are involved. Unfortunately, there is a lack of consensus among scientists how to achieve the generalization. Various suggestions were made, in order to compare or even verify these, we need a generic computational tool. In this paper, we follow an unusual but quite convenient way of formulation based on action principles. First, in order to present its benefits, we start with the action principle leading to the well-known form of elasticity theory and present a variational formulation in order to obtain a weak form. Second, we generalize elasticity and point out, in which term the suggested formalism differs. By using the same approach, we obtain a weak form for strain gradient elasticity. The weak forms for elasticity and for strain gradient elasticity are solved numerically by using open-source packages—by using the finite element method in space and finite difference method in time. We present some applications from elasticity as well as strain gradient elasticity and simulate the so-called size effect

    Modeling diffusional coarsening in eutectic tin/lead solders: A quantitative approach

    Get PDF
    This paper presents a quantitative simulation of the phase separation and coarsening phenomenon in eutectic tin/lead (SnPb) solders. The computer modeling is based on continuum theory and field phase models which were evaluated using the most recently available data for the free energy of the tin/lead system, diffusional and mobility coefficients, elastic constants as well as surface tensions of both phases. The model presented allows to study the influence as well as the interaction between classical diffusion of the Fickean type, surface energies according to Cahn and Hilliard, as well as stresses and strains on phase separation and coarsening. An attempt is made to compare the temporal development of a eutectic SnPb microstructure at different temperature levels and subjected to different stress levels as predicted by the model to actual experiments

    A note on couette flow of nematic crystals according to the Ericksen–Leslie theory

    Get PDF
    In order to model the flow of nematic crystals, the theoretical framework according to Ericksen and Leslie is applied. The essentials of the theory are compiled and then specialized to Couette flow. The profiles for linear velocity and orientation angle will be computed and, in particular, we shall also study the rise in temperature due to viscous dissipation, which is frequently ignored by mechanicians. Analytical and numerical solutions for the fields are derived for different boundary conditions and will subsequently be discussed.TU Berlin, Open-Access-Mittel - 201

    A study of the coarsening in tin/lead solders

    Get PDF
    This paper presents a model, which is capable to simulate the coarsening process observed during thermo-mechanical treatment of binary tin-lead solders. Fourier transforms and spectral theory are used for the numerical treatment of the thermo-elastic as well as of the diffusion problem encountered during phase separation in these alloys. More specifically, the analysis is based exclusively on continuum theory, first, relies on the numerical computation of the local stresses and strains in a representative volume element (RVE). Second, this information is used in an extended diffusion equation to predict the local concentrations of the constituents of the solder. Besides the classical driving forces for phase separation, as introduced by Fick and Cahn-Hilliard, this equation contains an additional term which links the mechanical to the thermodynamical problem. It connects internal and external stresses, strains, temperature, as well as concentrations and allows for a comprehensive study of the coarsening and aging process

    Thin‐layer inertial effects in plasticity and dynamics in the Prandtl problem

    Get PDF
    Especially in metal forming, large plastic deformation occurs in thin plates. The problem of compressing dies is analyzed to evaluate the spreading of a thin layer in between. The velocity of dies is a given function in time so that the kinematics of the process is known. This problem can be considered as a generalization of the classical Prandtl problem by taking inertial effects into account and introducing dimensionless parameters as internal variables depending on time. The first parameter is purely geometric corresponding to the thin‐layer approximation; the second and the third parameters are dimensionless velocity and acceleration during the dies getting pressed. We use singular asymptotic expansions of unknown functions and study how these parameters vary preceding the dies of moment. Depending on this relation, the dynamic corrections to the quasistatic solution is a part of various terms of the asymptotic series. The corresponding analytical investigation both for general case and for particular typical regimes of plates motion is carried out.TU Berlin, Open-Access-Mittel - 201

    Determination of stiffness and higher gradient coefficients by means of the embedded atom method: An approach for binary alloys

    Get PDF
    For a quantitative theoretical description of phase separation and coarsening reliable data of stiffness constants and the so called Higher Gradient Coefficients (HGCs) are required. For that reason pair potentials of the Lennard-Jones type were used in [1] to provide a theoretical tool for their quantitative determination. Following up on this work these quantities are now calculated by means of the Embedded-Atom Method (EAM), a recently developed approach to describe interatomic potentials in metals. This is done, first, to achieve a better agreement between predicted and experimentally observed stiffness data as well as to avoid artifacts, such as the Cauchy paradox, and, second, to increase the trustworthiness of the HGCs for which experimental data are rarely available. After an introduction to the fundamentals of EAM it is outlined how it can be used for calculating stiffness constants and HGCs. In particular, Johnson's modification of EAM for nearest neighbor interactions [3] is applied to present explicit numerical results for a case study alloy, Ag-Cu, which has a ``simple" face-centered-cubic crystal structure and where it is comparatively easy to obtain all the required analysis data from the literature and to experimentally compare the predictions of mechanical data

    1D HERMITE ELEMENTS FOR C1-CONTINUOUS SOLUTIONS IN SECOND GRADIENT ELASTICITY

    Get PDF
    We present a modified strain gradient theory of elasticity for linear isotropic materials in order to account for the so-called size effect. Additional material length scale parameters are introduced and the problem of static beam bending is analyzed. A numerical solution is derived by means of a finite element approach. A global C1-continuous displacement field is applied in finite element solutions because the higher-order strain energy density additionally depends on second gradients of displacements. So-called Hermite finite elements are used that allow for merging gradients between elements. The element stiffness matrix as well as the global stiffness matrix of the problem is developed. Convergence, C1-continuity and the size effect in the numerical solution is shown. Experiments on bending stiffnesses of different sized micro beams made of the polymer SU-8 are performed by using an atomic force microscope and the results are compared to the numerical solution

    A higher gradient theory of mixtures for multi-component materials with numerical examples for binary alloys

    Get PDF
    A theory of mixture for multi-component materials is presented based on a novel, straightforward method for the exploitation of the Second Law of thermodynamics. In particular the constitutive equations for entropy, heat and diffusion flux as well as the stress tensor are formulated as a consequence of the non-negative entropy production. Furthermore we derive the established Gibbs equation as well as the Gibbs Duhem relation which also follow from the formalism. Moreover, it is illustrated, how local mechanical strains due to eigenstrains or external loadings, modify the free energy and, consequently, change the chemical potentials of the components. All consecutive steps are illustrated, first, for simple mixtures and, second, for a system containing two different phases. So-called higher gradients of the concentrations are considered, which take the nonuniform composition into account. It will also become apparent that more/other variables of modified/different physical pr oblems beyond the illustrated ones can be easily treated within the presented framework. This work ends with the specification to binary alloys and with the presentation of various numerical simulations
    • 

    corecore