6 research outputs found

    Prospective plasma lipid profiling in individuals with and without depression

    No full text
    Abstract Background So far, studies on possible association of plasma lipid levels and depressive disorder are contradictory. This prospective work aimed at assessing a plasma lipid profile in individuals with major depression and healthy controls. Methods In total, 94 patients with major depression and 152 healthy controls were included in this prospective study. After an overnight fasting state of 12 h they underwent blood drawing for triglyzerides (TG), total cholesterol, low-density lipoprotein (LDL)- and high-density lipoprotein (HDL)-cholesterol measurements. All participants were evaluated in a clinical interview and filled out the self-rating Beck Depression Inventory (BDI-II) scale to identify depressive symptomatology. Results Ninety-four patients with major depression showed significantly higher median (interquartile range) plasma TG levels (108.0 [75.8–154.1] vs. 84.0 [63.0–132.2] mg/dL, P = 0.014) and significantly lower HDL-cholesterol levels (55.0 [46.9–123.0] vs. 61.5 [47.4–72.6] mg/dL, P = 0.049) compared to 152 individuals without depression, respectively. Total and LDL-cholesterol concentrations were observed slightly higher in patients with major depression. Significant positive correlation was found between TG, total cholesterol and LDL-cholesterol concentrations and the BDI-II score (p = 0.027, 0.048 and 0.018), and in tendency negative correlation between HDL-cholesterol levels and the BDI-II score (P = 0.091), respectively. Conclusions Depressive individuals were found with adverse plasma lipid patterns of higher TG and lower HDL-cholesterol levels compared to healthy controls. On this basis, the authors would suggest the implementation of routine lipid measurements in order to stratify these patients by their cardiovascular risk

    Association between increased plasma levels of homocysteine and depression observed in individuals with primary lactose malabsorption.

    No full text
    BACKGROUND:Current literature proposes associations between homocysteine (HCY), folic acid (FA), vitamin B12 metabolism and depression. However, the exact underlying biological mechanisms remain unclear. This study aimed at evaluating a possible link between primary adult-type lactose malabsorption (PALM), HCY, FA and vitamin B12 metabolism and depressive disorder. METHODS:Plasma levels of HCY, FA and vitamin B12 were determined in 78 patients with PALM and 160 individuals with lactase persistence sub-grouped by the presence or absence of major depression. RESULTS:In 78 patients with PALM, the subgroup of 22 individuals with major depression showed significantly higher median (interquartile range) HCY (10.10 [8.46-12.03] vs. 8.9 [7.54-9.86] ÎĽmol/L, p = 0.029) and lower plasma FA levels (5.7 [4.68-9.14] vs. 6.95 [5.24-10.56] ÎĽmol/L, p = 0.272) compared to the subgroup of 56 individuals without depression, respectively. No such associations could be observed for those 160 individuals without PALM (i.e., lactase persistence) Plasma HCY levels were positively correlated with depressive symptoms (p = 0.052), and showed negative correlations with FA (p = < 0.001) and vitamin B12 (p = 0.029), respectively. CONCLUSION:Depressed individuals with PALM were found with significantly higher HCY and lower FA levels compared to non-depressed individuals with PALM, however, this association was absent in the subgroup of lactase persistent individuals. These findings suggest an association between increased HCY levels, lactose malabsorption and depression

    Age constraints on faulting and fault reactivation: a multi-chronological approach.

    Get PDF
    Movement within the Earth’s upper crust is commonly accommodated by faults or shear zones, ranging in scale from micro-displacements to regional tectonic lineaments. Since faults are active on different time scales and can be repeatedly reactivated, their displacement chronology is difficult to reconstruct. This study represents a multi-geochronological approach to unravel the evolution of an intracontinental fault zone locality along the Danube Fault, central Europe. At the investigated fault locality, ancient motion has produced a cataclastic deformation zone in which the cataclastic material was subjected to hydrothermal alteration and K-feldspar was almost completely replaced by illite and other phyllosilicates. Five different geochronological techniques (zircon Pb-evaporation, K–Ar and Rb–Sr illite, apatite fission track and fluorite (U-Th)/He) have been applied to explore the temporal fault activity. The upper time limit for initiation of faulting is constrained by the crystallization age of the primary rock type (known as “Kristallgranit”) at 325 ± 7 Ma, whereas the K–Ar and Rb–Sr ages of two illite fractions <2 μm (266–255 Ma) are interpreted to date fluid infiltration events during the final stage of the cataclastic deformation period. During this time, the “Kristallgranit” was already at or near the Earth’s surface as indicated by the sedimentary record and thermal modelling results of apatite fission track data. (U–Th)/He thermochronology of two single fluorite grains from a fluorite–quartz vein within the fault zone yield Cretaceous ages that clearly postdate their Late-Variscan mineralization age. We propose that later reactivation of the fault caused loss of helium in the fluorites. This assertion is supported by geological evidence, i.e. offsets of Jurassic and Cretaceous sediments along the fault and apatite fission track thermal modelling results are consistent with the prevalence of elevated temperatures (50–80°C) in the fault zone during the Cretaceous

    Living in Heterogeneous Woodlands – Are Habitat Continuity or Quality Drivers of Genetic Variability in a Flightless Ground Beetle?

    Get PDF
    Although genetic diversity is one of the key components of biodiversity, its drivers are still not fully understood. While it is known that genetic diversity is affected both by environmental parameters as well as habitat history, these factors are not often tested together. Therefore, we analyzed 14 microsatellite loci in Abax parallelepipedus, a flightless, forest dwelling ground beetle, from 88 plots in two study regions in Germany. We modeled the effects of historical and environmental variables on allelic richness, and found for one of the regions, the Schorfheide-Chorin, a significant effect of the depth of the litter layer, which is a main component of habitat quality, and of the sampling effort, which serves as an inverse proxy for local population size. For the other region, the Schwäbische Alb, none of the potential drivers showed a significant effect on allelic richness. We conclude that the genetic diversity in our study species is being driven by current local population sizes via environmental variables and not by historical processes in the studied regions. This is also supported by lack of genetic differentiation between local populations sampled from ancient and from recent woodlands. We suggest that the potential effects of former fragmentation and recolonization processes have been mitigated by the large and stable local populations of Abax parallelepipedus in combination with the proximity of the ancient and recent woodlands in the studied landscapes
    corecore