63 research outputs found

    In Utero p,p′-DDE Exposure and Infant Neurodevelopment: A Perinatal Cohort in Mexico

    Get PDF
    BACKGROUND: Evidence suggests that p,p′-dichlorodiphenyldichloroethene (DDE) affects neurodevelopment in infants, although a critical exposure window has not yet been identified. OBJECTIVES: Our goal was to assess the prenatal DDE exposure window and its effect on the psychomotor development index (PDI) and mental development index (MDI) during the first year of life. METHODS: We recruited 244 children whose pregnancies and deliveries were uncomplicated, and whose mothers were monitored throughout the pregnancy. Participating mothers were not occupationally exposed to DDT (dichlorodiphenyltrichloroethane) but were residents of a zone in Mexico with endemic malaria. We measured serum levels of DDE before pregnancy and during each trimester of the pregnancy. We evaluated PDI and MDI of the Bayley Scales for Infant Development (BSID-II), at 1, 3, 6, and 12 months of age. We adjusted for quality of the home environment and maternal intellectual coefficient (IQ). We used generalized mixed-effects models for statistical analysis. RESULTS: Third-trimester DDE level (7.8 ± 2.8 ppb) was significantly higher than the level at baseline, first, and second trimesters, but the differences never exceeded 20%. Only DDE levels during the first trimester of pregnancy were associated with a significant reduction in PDI (every doubled increase of DDE level reduced the PDI 0.5 points). DDE was not associated with MDI. CONCLUSIONS: A critical window of exposure to DDE in utero may be the first trimester of the pregnancy, and psychomotor development is a target of this compound. Residues of DDT metabolites may present a risk of developmental delay for years after termination of DDT use

    Comparison of Outcomes of antibiotic Drugs and Appendectomy (CODA) trial: a protocol for the pragmatic randomised study of appendicitis treatment.

    Get PDF
    INTRODUCTION: Several European studies suggest that some patients with appendicitis can be treated safely with antibiotics. A portion of patients eventually undergo appendectomy within a year, with 10%-15% failing to respond in the initial period and a similar additional proportion with suspected recurrent episodes requiring appendectomy. Nearly all patients with appendicitis in the USA are still treated with surgery. A rigorous comparative effectiveness trial in the USA that is sufficiently large and pragmatic to incorporate usual variations in care and measures the patient experience is needed to determine whether antibiotics are as good as appendectomy. OBJECTIVES: The Comparing Outcomes of Antibiotic Drugs and Appendectomy (CODA) trial for acute appendicitis aims to determine whether the antibiotic treatment strategy is non-inferior to appendectomy. METHODS/ANALYSIS: CODA is a randomised, pragmatic non-inferiority trial that aims to recruit 1552 English-speaking and Spanish-speaking adults with imaging-confirmed appendicitis. Participants are randomised to appendectomy or 10 days of antibiotics (including an option for complete outpatient therapy). A total of 500 patients who decline randomisation but consent to follow-up will be included in a parallel observational cohort. The primary analytic outcome is quality of life (measured by the EuroQol five dimension index) at 4 weeks. Clinical adverse events, rate of eventual appendectomy, decisional regret, return to work/school, work productivity and healthcare utilisation will be compared. Planned exploratory analyses will identify subpopulations that may have a differential risk of eventual appendectomy in the antibiotic treatment arm. ETHICS AND DISSEMINATION: This trial was approved by the University of Washington\u27s Human Subjects Division. Results from this trial will be presented in international conferences and published in peer-reviewed journals. TRIAL REGISTRATION NUMBER: NCT02800785

    Hypomethylation of a LINE-1 Promoter Activates an Alternate Transcript of the MET Oncogene in Bladders with Cancer

    Get PDF
    It was recently shown that a large portion of the human transcriptome can originate from within repetitive elements, leading to ectopic expression of protein-coding genes. However the mechanism of transcriptional activation of repetitive elements has not been definitively elucidated. For the first time, we directly demonstrate that hypomethylation of retrotransposons can cause altered gene expression in humans. We also reveal that active LINE-1s switch from a tetranucleosome to dinucleosome structure, acquiring H2A.Z- and nucleosome-free regions upstream of TSSs, previously shown only at active single-copy genes. Hypomethylation of a specific LINE-1 promoter was also found to induce an alternate transcript of the MET oncogene in bladder tumors and across the entire urothelium of tumor-bearing bladders. These data show that, in addition to contributing to chromosomal instability, hypomethylation of LINE-1s can alter the functional transcriptome and plays a role not only in human disease but also in disease predisposition

    A connectome and analysis of the adult Drosophila central brain.

    Get PDF
    The neural circuits responsible for animal behavior remain largely unknown. We summarize new methods and present the circuitry of a large fraction of the brain of the fruit fly Drosophila melanogaster. Improved methods include new procedures to prepare, image, align, segment, find synapses in, and proofread such large data sets. We define cell types, refine computational compartments, and provide an exhaustive atlas of cell examples and types, many of them novel. We provide detailed circuits consisting of neurons and their chemical synapses for most of the central brain. We make the data public and simplify access, reducing the effort needed to answer circuit questions, and provide procedures linking the neurons defined by our analysis with genetic reagents. Biologically, we examine distributions of connection strengths, neural motifs on different scales, electrical consequences of compartmentalization, and evidence that maximizing packing density is an important criterion in the evolution of the fly's brain

    Potential causal association between gut microbiome and posttraumatic stress disorder

    Get PDF
    Funding Information: We thank the participants and working staff including the Psychiatric Genomics Consortium Posttraumatic Stress Disorder Working Group, the FinnGen consortium, and the MiBioGen consortium. Publisher Copyright: © 2024, The Author(s).Background: The causal effects of gut microbiome and the development of posttraumatic stress disorder (PTSD) are still unknown. This study aimed to clarify their potential causal association using mendelian randomization (MR). Methods: The summary-level statistics for gut microbiome were retrieved from a genome-wide association study (GWAS) of the MiBioGen consortium. As to PTSD, the Freeze 2 datasets were originated from the Psychiatric Genomics Consortium Posttraumatic Stress Disorder Working Group (PGC-PTSD), and the replicated datasets were obtained from FinnGen consortium. Single nucleotide polymorphisms meeting MR assumptions were selected as instrumental variables. The inverse variance weighting (IVW) method was employed as the main approach, supplemented by sensitivity analyses to evaluate potential pleiotropy and heterogeneity and ensure the robustness of the MR results. We also performed reverse MR analyses to explore PTSD’s causal effects on the relative abundances of specific features of the gut microbiome. Results: In Freeze 2 datasets from PGC-PTSD, eight bacterial traits revealed a potential causal association between gut microbiome and PTSD (IVW, all P < 0.05). In addition, Genus.Dorea and genus.Sellimonas were replicated in FinnGen datasets, in which eight bacterial traits revealed a potential causal association between gut microbiome and the occurrence of PTSD. The heterogeneity and pleiotropy analyses further supported the robustness of the IVW findings, providing additional evidence for their reliability. Conclusion: Our study provides the potential causal impact of gut microbiomes on the development of PTSD, shedding new light on the understanding of the dysfunctional gut-brain axis in this disorder. Our findings present novel evidence and call for investigations to confirm the association between their links, as well as to illuminate the underlying mechanisms.publishersversionpublishe

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Potential causal association between gut microbiome and posttraumatic stress disorder

    Get PDF
    Background: The causal effects of gut microbiome and the development of posttraumatic stress disorder (PTSD) are still unknown. This study aimed to clarify their potential causal association using mendelian randomization (MR). Methods: The summary-level statistics for gut microbiome were retrieved from a genome-wide association study (GWAS) of the MiBioGen consortium. As to PTSD, the Freeze 2 datasets were originated from the Psychiatric Genomics Consortium Posttraumatic Stress Disorder Working Group (PGC-PTSD), and the replicated datasets were obtained from FinnGen consortium. Single nucleotide polymorphisms meeting MR assumptions were selected as instrumental variables. The inverse variance weighting (IVW) method was employed as the main approach, supplemented by sensitivity analyses to evaluate potential pleiotropy and heterogeneity and ensure the robustness of the MR results. We also performed reverse MR analyses to explore PTSD’s causal effects on the relative abundances of specific features of the gut microbiome. Results: In Freeze 2 datasets from PGC-PTSD, eight bacterial traits revealed a potential causal association between gut microbiome and PTSD (IVW, all P < 0.05). In addition, Genus.Dorea and genus.Sellimonas were replicated in FinnGen datasets, in which eight bacterial traits revealed a potential causal association between gut microbiome and the occurrence of PTSD. The heterogeneity and pleiotropy analyses further supported the robustness of the IVW findings, providing additional evidence for their reliability. Conclusion: Our study provides the potential causal impact of gut microbiomes on the development of PTSD, shedding new light on the understanding of the dysfunctional gut-brain axis in this disorder. Our findings present novel evidence and call for investigations to confirm the association between their links, as well as to illuminate the underlying mechanisms

    Epigenetic Alterations in Bladder Cancer and Their Potential Clinical Implications

    No full text
    Urothelial carcinoma (UC), the most common type of bladder cancer, is one of the most expensive malignancies to treat due to its high rate of recurrence. The characterization of the genetic alterations associated with UC has revealed the presence of two mutually exclusive molecular pathways along which distinct genetic abnormalities contribute to the formation of invasive and noninvasive tumors. Here, we focus on the epigenetic alterations found in UC, including the presence of an epigenetic field defect throughout bladders with tumors. A distinct hypomethylation pattern was found in noninvasive tumors, whereas widespread hypermethylation was found in invasive tumors, indicating the two pathways given rise to two tumor types also differ epigenetically. Since certain epigenetic alterations precede histopathological changes, they can serve as excellent markers for the development of diagnostic, prognostic, and surveillance tools. In addition, their dynamic nature and reversibility with pharmacological interventions open new and exciting avenues for therapies. The epigenetic abnormalities associated with UC would make it an excellent target for epigenetic therapy, which is currently approved for the treatment of a few hematological malignancies. Future research is needed to address efficacy and potential toxicity issues before it can be implemented as a therapeutic strategy for solid tumors
    corecore