14,040 research outputs found

    Control considerations for high frequency, resonant, power processing equipment used in large systems

    Get PDF
    Addressed is a class of resonant power processing equipment designed to be used in an integrated high frequency (20 KHz domain), utility power system for large, multi-user spacecraft and other aerospace vehicles. It describes a hardware approach, which has been the basis for parametric and physical data used to justify the selection of high frequency ac as the PMAD baseline for the space station. This paper is part of a larger effort undertaken by NASA and General Dynamics to be sure that all potential space station contractors and other aerospace power system designers understand and can comfortably use this technology, which is now widely used in the commercial sector. In this paper, we will examine control requirements, stability, and operational modes; and their hardware impacts from an integrated system point of view. The current space station PMAD system will provide the overall requirements model to develop an understanding of the performance of this type of system with regard to: (1) regulation; (2) power bus stability and voltage control; (3) source impedance; (4) transient response; (5) power factor effects, and (6) limits and overloads

    Genetic Differentiation Among Three Species of \u3ci\u3eParadosa\u3c/i\u3e (Arachnida: Lycosidae)

    Get PDF
    Allozymic variation in nine protein producing loci was examined in three species of Pardosa using starch gel electrophoresis. Allozyme frequencies showed a high degree of geographic uniformity among conspecific populations. Estimated heterozygosities for the three species ranged from 0.05 to 0.15. Rogers\u27 coefficients of genetic similarity based on allozyme frequencies averaged over conspecific populations ranged from 0.16 to 0.37 fo rthe three species

    The impact of the AIDS epidemic on the lives of older people in rural Uganda

    Get PDF

    The strength and timing of the mitochondrial bottleneck in salmon suggests a conserved mechanism in vertebrates

    Get PDF
    In most species mitochondrial DNA (mtDNA) is inherited maternally in an apparently clonal fashion, although how this is achieved remains uncertain. Population genetic studies show not only that individuals can harbor more than one type of mtDNA (heteroplasmy) but that heteroplasmy is common and widespread across a diversity of taxa. Females harboring a mixture of mtDNAs may transmit varying proportions of each mtDNA type (haplotype) to their offspring. However, mtDNA variants are also observed to segregate rapidly between generations despite the high mtDNA copy number in the oocyte, which suggests a genetic bottleneck acts during mtDNA transmission. Understanding the size and timing of this bottleneck is important for interpreting population genetic relationships and for predicting the inheritance of mtDNA based disease, but despite its importance the underlying mechanisms remain unclear. Empirical studies, restricted to mice, have shown that the mtDNA bottleneck could act either at embryogenesis, oogenesis or both. To investigate whether the size and timing of the mitochondrial bottleneck is conserved between distant vertebrates, we measured the genetic variance in mtDNA heteroplasmy at three developmental stages (female, ova and fry) in chinook salmon and applied a new mathematical model to estimate the number of segregating units (N(e)) of the mitochondrial bottleneck between each stage. Using these data we estimate values for mtDNA Ne of 88.3 for oogenesis, and 80.3 for embryogenesis. Our results confirm the presence of a mitochondrial bottleneck in fish, and show that segregation of mtDNA variation is effectively complete by the end of oogenesis. Considering the extensive differences in reproductive physiology between fish and mammals, our results suggest the mechanism underlying the mtDNA bottleneck is conserved in these distant vertebrates both in terms of it magnitude and timing. This finding may lead to improvements in our understanding of mitochondrial disorders and population interpretations using mtDNA data

    The Carrington event not observed in most ice core nitrate records

    Get PDF
    The Carrington Event of 1859 is considered to be among the largest space weather events of the last 150 years. We show that only one out of 14 well-resolved ice core records from Greenland and Antarctica has a nitrate spike dated to 1859. No sharp spikes are observed in the Antarctic cores studied here. In Greenland numerous spikes are observed in the 40 years surrounding 1859, but where other chemistry was measured, all large spikes have the unequivocal signal, including co-located spikes in ammonium, formate, black carbon and vanillic acid, of biomass burning plumes. It seems certain that most spikes in an earlier core, including that claimed for 1859, are also due to biomass burning plumes, and not to solar energetic particle (SEP) events. We conclude that an event as large as the Carrington Event did not leave an observable, widespread imprint in nitrate in polar ice. Nitrate spikes cannot be used to derive the statistics of SEPs

    Comment on “Low time resolution analysis of ice cores cannot detect impulsive nitrate events” by D. F. Smart et al.

    Get PDF
    Smart et al. (2014) suggested that the detection of nitrate spikes in polar ice cores from solar energetic particle (SEP) events could be achieved if an analytical system with sufficiently high resolution was used. Here we show that the spikes they associate with SEP events are not reliably recorded in cores from the same location, even when the resolution is clearly adequate. We explain the processes that limit the effective resolution of ice cores. Liquid conductivity data suggest that the observed spikes are associated with sodium or another nonacidic cation, making it likely that they result from deposition of sea salt or similar aerosol that has scavenged nitrate, rather than from a primary input of nitrate in the troposphere. We consider that there is no evidence at present to support the identification of any spikes in nitrate as representing SEP events. Although such events undoubtedly create nitrate in the atmosphere, we see no plausible route to using nitrate spikes to document the statistics of such events

    Cluster Algorithm for a Solid-On-Solid Model with Constraints

    Full text link
    We adapt the VMR (valleys-to-mountains reflections) algorithm, originally devised by us for simulations of SOS models, to the BCSOS model. It is the first time that a cluster algorithm is used for a model with constraints. The performance of this new algorithm is studied in detail in both phases of the model, including a finite size scaling analysis of the autocorrelations.Comment: 10 pages, 3 figures appended as ps-file
    corecore