57 research outputs found

    Dynamics of a Naturally Hidden State Restricts Adenylate Kinase Activity

    Get PDF

    Истмико-цервикальная недостаточность и беременность: диагностика, лечение, профилактика

    Get PDF
    МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИШЕЙКИ МАТКИ ФУНКЦИОНАЛЬНАЯ НЕДОСТАТОЧНОСТЬБЕРЕМЕННОСТИ ОСЛОЖНЕНИЯАБОРТ ПРИВЫЧНЫЙСЕРКЛЯЖ ШЕЙКИ МАТКИПРОГЕСТЕРОНПЕССАРИИИНТЕРНЫКЛИНИЧЕСКИЕ ОРДИНАТОРЫВ рекомендациях описаны современные методы диагностики и лечения пациентов с истмико-цервикальной недостаточностью, тактика ведения беременности при несостоятельности шейки матки. Издание предназначено для врачей акушеров-гинекологов, студентов медицинских вузов, врачей-интернов, клинических ординаторов

    Linkage between fitness of yeast cells and adenylate kinase catalysis

    Get PDF
    Enzymes have evolved with highly specific values of their catalytic parameters kcat and KM. This poses fundamental biological questions about the selection pressures responsible for evolutionary tuning of these parameters. Here we are address these questions for the enzyme adenylate kinase (Adk) in eukaryotic yeast cells. A plasmid shuffling system was developed to allow quantification of relative fitness (calculated from growth rates) of yeast in response to perturbations of Adk activity introduced through mutations. Biophysical characterization verified that all variants studied were properly folded and that the mutations did not cause any substantial differences to thermal stability. We found that cytosolic Adk is essential for yeast viability in our strain background and that viability could not be restored with a catalytically dead, although properly folded Adk variant. There exist a massive overcapacity of Adk catalytic activity and only 12% of the wild type kcat is required for optimal growth at the stress condition 20°C. In summary, the approach developed here has provided new insights into the evolutionary tuning of kcat for Adk in a eukaryotic organism. The developed methodology may also become useful for uncovering new aspects of active site dynamics and also in enzyme design since a large library of enzyme variants can be screened rapidly by identifying viable colonies

    Protein dynamics : the future is bright and complicated!

    No full text
    Biological life depends on motion, and this manifests itself in proteins that display motion over a formidable range of time scales spanning from femtoseconds vibrations of atoms at enzymatic transition states, all the way to slow domain motions occurring on micro to milliseconds. An outstanding challenge in contemporary biophysics and structural biology is a quantitative understanding of the linkages among protein structure, dynamics, and function. These linkages are becoming increasingly explorable due to conceptual and methodological advances. In this Perspective article, we will point toward future directions of the field of protein dynamics with an emphasis on enzymes. Research questions in the field are becoming increasingly complex such as the mechanistic understanding of high-order interaction networks in allosteric signal propagation through a protein matrix, or the connection between local and collective motions. In analogy to the solution to the "protein folding problem,"we argue that the way forward to understanding these and other important questions lies in the successful integration of experiment and computation, while utilizing the present rapid expansion of sequence and structure space. Looking forward, the future is bright, and we are in a period where we are on the doorstep to, at least in part, comprehend the importance of dynamics for biological function

    Protein dynamics and function from solution state NMR spectroscopy

    No full text
    It is well-established that dynamics are central to protein function; their importance is implicitly acknowledged in the principles of the Monod, Wyman and Changeux model of binding cooperativity, which was originally proposed in 1965. Nowadays the concept of protein dynamics is formulated in terms of the energy landscape theory, which can be used to understand protein folding and conformational changes in proteins. Because protein dynamics are so important, a key to understanding protein function at the molecular level is to design experiments that allow their quantitative analysis. Nuclear magnetic resonance (NMR) spectroscopy is uniquely suited for this purpose because major advances in theory, hardware, and experimental methods have made it possible to characterize protein dynamics at an unprecedented level of detail. Unique features of NMR include the ability to quantify dynamics (i) under equilibrium conditions without external perturbations, (ii) using many probes simultaneously, and (iii) over large time intervals. Here we review NMR techniques for quantifying protein dynamics on fast (ps-ns), slow (μs-ms), and very slow (s-min) time scales. These techniques are discussed with reference to some major discoveries in protein science that have been made possible by NMR spectroscopy.publishe

    Structure and Backbone Dynamics of Apo-CBFβ in Solution †

    No full text

    Milligram scale expression, refolding, and purification of Bombyx mori cocoonase using a recombinant E. coli system

    No full text
    Silk is one of the most versatile biomaterials with signature properties of outstanding mechanical strength and flexibility. A potential avenue for developing more environmentally friendly silk production is to make use of the silk moth (Bombyx mori) cocoonase, this will at the same time increase the possibility for using the byproduct, sericin, as a raw material for other applications. Cocoonase is a serine protease utilized by the silk moth to soften the cocoon to enable its escape after completed metamorphosis. Cocoonase selectively degrades the glue protein of the cocoon, sericin, without affecting the silk-fiber made of the protein fibroin. Cocoonase can be recombinantly produced in E. coli, however, it is exclusively found as insoluble inclusion bodies. To solve this problem and to be able to utilize the benefits associated with an E. coli based expression system, we have developed a protocol that enables the production of soluble and functional protease in the milligram/liter scale. The core of the protocol is refolding of the protein in a buffer with a redox potential that is optimized for formation of native and intramolecular di-sulfide bridges. The redox potential was balanced with defined concentrations of reduced and oxidized glutathione. This E. coli based production protocol will, in addition to structure determination, also enable modification of cocoonase both in terms of catalytic function and stability. These factors will be valuable components in the development of alternate silk production methodology

    Perspectives on computational enzyme modeling : from mechanisms to design and drug development

    No full text
    Understanding enzyme mechanisms is essential for unraveling the complex molecular machinery of life. In this review, we survey the field of computational enzymology, highlighting key principles governing enzyme mechanisms and discussing ongoing challenges and promising advances. Over the years, computer simulations have become indispensable in the study of enzyme mechanisms, with the integration of experimental and computational exploration now established as a holistic approach to gain deep insights into enzymatic catalysis. Numerous studies have demonstrated the power of computer simulations in characterizing reaction pathways, transition states, substrate selectivity, product distribution, and dynamic conformational changes for various enzymes. Nevertheless, significant challenges remain in investigating the mechanisms of complex multistep reactions, large-scale conformational changes, and allosteric regulation. Beyond mechanistic studies, computational enzyme modeling has emerged as an essential tool for computer-aided enzyme design and the rational discovery of covalent drugs for targeted therapies. Overall, enzyme design/engineering and covalent drug development can greatly benefit from our understanding of the detailed mechanisms of enzymes, such as protein dynamics, entropy contributions, and allostery, as revealed by computational studies. Such a convergence of different research approaches is expected to continue, creating synergies in enzyme research. This review, by outlining the ever-expanding field of enzyme research, aims to provide guidance for future research directions and facilitate new developments in this important and evolving field
    corecore