4,755 research outputs found

    Recent Experimental Tests of Special Relativity

    Full text link
    We review our recent Michelson-Morley (MM) and Kennedy-Thorndike (KT) experiment, which tests Lorentz invariance in the photon sector, and report first results of our ongoing atomic clock test of Lorentz invariance in the matter sector. The MM-KT experiment compares a cryogenic microwave resonator to a hydrogen maser, and has set the most stringent limit on a number of parameters in alternative theories to special relativity. We also report first results of a test of Lorentz invariance in the SME (Standard Model Extension) matter sector, using Zeeman transitions in a laser cooled Cs atomic fountain clock. We describe the experiment together with the theoretical model and analysis. Recent experimental results are presented and we give a first estimate of components of the c~p\tilde{c}^p parameters of the SME matter sector. A full analysis of systematic effects is still in progress, and will be the subject of a future publication together with our final results. If confirmed, the present limits would correspond to first ever measurements of some c~p\tilde{c}^p components, and improvements by 11 and 14 orders of magnitude on others.Comment: 29 pages. Contribution to Springer Lecture Notes, "Special Relativity - Will it survive the next 100 years ?", Proceedings, Potsdam, 200

    Rotating Resonator-Oscillator Experiments to Test Lorentz Invariance in Electrodynamics

    Full text link
    In this work we outline the two most commonly used test theories (RMS and SME) for testing Local Lorentz Invariance (LLI) of the photon. Then we develop the general framework of applying these test theories to resonator experiments with an emphasis on rotating experiments in the laboratory. We compare the inherent sensitivity factors of common experiments and propose some new configurations. Finally we apply the test theories to the rotating cryogenic experiment at the University of Western Australia, which recently set new limits in both the RMS and SME frameworks [hep-ph/0506074].Comment: Submitted to Lecture Notes in Physics, 36 pages, minor modifications, updated list of reference

    Non-invasive visualization of amyloid-beta deposits in Alzheimer amyloidosis mice using magnetic resonance imaging and fluorescence molecular tomography

    Full text link
    Abnormal cerebral accumulation of amyloid-beta peptide (Aβ) is a major hallmark of Alzheimer's disease. Non-invasive monitoring of Aβ deposits enables assessing the disease burden in patients and animal models mimicking aspects of the human disease as well as evaluating the efficacy of Aβ-modulating therapies. Previous in vivo assessments of plaque load have been predominantly based on macroscopic fluorescence reflectance imaging (FRI) and confocal or two-photon microscopy using Aβ-specific imaging agents. However, the former method lacks depth resolution, whereas the latter is restricted by the limited field of view preventing a full coverage of the large brain region. Here, we utilized a fluorescence molecular tomography (FMT)-magnetic resonance imaging (MRI) pipeline with the curcumin derivative fluorescent probe CRANAD-2 to achieve full 3D brain coverage for detecting Aβ accumulation in the arcAβ mouse model of cerebral amyloidosis. A homebuilt FMT system was used for data acquisition, whereas a customized software platform enabled the integration of MRI-derived anatomical information as prior information for FMT image reconstruction. The results obtained from the FMT-MRI study were compared to those from conventional planar FRI recorded under similar physiological conditions, yielding comparable time courses of the fluorescence intensity following intravenous injection of CRANAD-2 in a region-of-interest comprising the brain. In conclusion, we have demonstrated the feasibility of visualizing Aβ deposition in 3D using a multimodal FMT-MRI strategy. This hybrid imaging method provides complementary anatomical, physiological and molecular information, thereby enabling the detailed characterization of the disease status in arcAβ mouse models, which can also facilitate monitoring the efficacy of putative treatments targeting Aβ

    Hyperbolic shear polaritons in low-symmetry crystals

    Get PDF
    The lattice symmetry of a crystal is one of the most important factors in determining its physical properties. Particularly, low-symmetry crystals offer powerful opportunities to control light propagation, polarization and phase. Materials featuring extreme optical anisotropy can support a hyperbolic response, enabling coupled light–matter interactions, also known as polaritons, with highly directional propagation and compression of light to deeply sub-wavelength scales. Here we show that monoclinic crystals can support hyperbolic shear polaritons, a new polariton class arising in the mid-infrared to far-infrared due to shear phenomena in the dielectric response. This feature emerges in materials in which the dielectric tensor cannot be diagonalized, that is, in low-symmetry monoclinic and triclinic crystals in which several oscillators with non-orthogonal relative orientations contribute to the optical response. Hyperbolic shear polaritons complement previous observations of hyperbolic phonon polaritons in orthorhombic and hexagonal crystal systems, unveiling new features, such as the continuous evolution of their propagation direction with frequency, tilted wavefronts and asymmetric responses. The interplay between diagonal loss and off-diagonal shear phenomena in the dielectric response of these materials has implications for new forms of non-Hermitian and topological photonic states. We anticipate that our results will motivate new directions for polariton physics in low-symmetry materials, which include geological minerals, many common oxides and organic crystals, greatly expanding the material base and extending design opportunities for compact photonic devices

    Higher Daily Air Temperature Is Associated with Shorter Leukocyte Telomere Length

    Get PDF
    [Image: see text] Higher air temperature is associated with increased age-related morbidity and mortality. To date, short-term effects of air temperature on leukocyte telomere length have not been investigated in an adult population. We aimed to examine the short-term associations between air temperature and leukocyte telomere length in an adult population-based setting, including two independent cohorts. This population-based study involved 5864 participants from the KORA F3 (2004–2005) and F4 (2006–2008) cohort studies conducted in Augsburg, Germany. Leukocyte telomere length was assessed by a quantitative PCR-based method. We estimated air temperature at each participant′s residential address through a highly resolved spatiotemporal model. We conducted cohort-specific generalized additive models to explore the short-term effects of air temperature on leukocyte telomere length at lags 0–1, 2–6, 0–6, and 0–13 days separately and pooled the estimates by fixed-effects meta-analysis. Our study found that between individuals, an interquartile range (IQR) increase in daily air temperature was associated with shorter leukocyte telomere length at lags 0–1, 2–6, 0–6, and 0–13 days (%change: −2.96 [−4.46; −1.43], −2.79 [−4.49; −1.07], −4.18 [−6.08; −2.25], and −6.69 [−9.04; −4.27], respectively). This meta-analysis of two cohort studies showed that between individuals, higher daily air temperature was associated with shorter leukocyte telomere length

    Indication of Anisotropy in Electromagnetic Propagation over Cosmological Distances

    Full text link
    We report a systematic rotation of the plane of polarization of electromagnetic radiation propagating over cosmological distances. The effect is extracted independently from Faraday rotation, and found to be correlated with the angular positions and distances to the sources. Monte Carlo analysis yields probabilistic P-values of order 10^(-3) for this to occur as a fluctuation. A fit yields a birefringence scale of order 10^(25) meters. Dependence on redshift z rules out a local effect. Barring hidden systematic bias in the data, the correlation indicates a new cosmological effect.Comment: 5 pages, 1 figure, ReVTeX. For more information, see http://www.cc.rochester.edu/college/rtc/Borge/aniso.htm

    Electromagnetic Polarization Effects due to Axion Photon Mixing

    Full text link
    We investigate the effect of axions on the polarization of electromagnetic waves as they propagate through astronomical distances. We analyze the change in the dispersion of the electromagnetic wave due to its mixing with axions. We find that this leads to a shift in polarization and turns out to be the dominant effect for a wide range of frequencies. We analyze whether this effect or the decay of photons into axions can explain the large scale anisotropies which have been observed in the polarizations of quasars and radio galaxies. We also comment on the possibility that the axion-photon mixing can explain the dimming of distant supernovae.Comment: 18 pages, 1 figur

    Promoting Development in Shared River Basins : Case Studies from International Experience

    Get PDF
    Transboundary freshwater systems create inevitable linkages and interdependencies between countries. The use of shared water resources by one country will, in most cases, impact other countries sharing the same system. At the same time, coordination among countries in the development of transboundary basins can yield greater benefits than would be available to individual countries pursuing individual development. UN Sustainable Development Goal 6 Target 5 recognizes this potential, calling on the world community to implement integrated water resources management at all levels, ‘including through transboundary cooperation as appropriate’. With a growing number of basins in which water use and demand permanently or temporarily exceeds the amount of renewable water available, and uncertainty from climate change, SDG Target 6.5 becomes increasingly relevant to development interventions designed to secure availability of supplies and create resilience. This is a companion document to the study "Promoting Development in Shared River Basins: Tools for Enhancing Transboundary Basin Management," which aims to contribute to relevant knowledge for achieving SDG Target 6.5. It presents six case studies from international experience on coordinated management in transboundary basins: Kura-Araks Basin; Columbia Basin; Chu and Talas Basins; Vuoksi Basin; Douro Basin; and Rhône Basin. The case studies demonstrate real-world application of selecting appropriate tools for individual transboundary situations along a three-stage process of coordinated basin development, which is detailed in the main study

    Extreme light confinement and control in low-symmetry phonon-polaritonic crystals

    Full text link
    Polaritons are a hybrid class of quasiparticles originating from the strong and resonant coupling between light and matter excitations. Recent years have witnessed a surge of interest in novel polariton types, arising from directional, long-lived material resonances, and leading to extreme optical anisotropy that enables novel regimes of nanoscale, highly confined light propagation. While such exotic propagation features may also be in principle achieved using carefully designed metamaterials, it has been recently realized that they can naturally emerge when coupling infrared light to directional lattice vibrations, i.e., phonons, in polar crystals. Interestingly, a reduction in crystal symmetry increases the directionality of optical phonons and the resulting anisotropy of the response, which in turn enables new polaritonic phenomena, such as hyperbolic polaritons with highly directional propagation, ghost polaritons with complex-valued wave vectors, and shear polaritons with strongly asymmetric propagation features. In this Review, we develop a critical overview of recent advances in the discovery of phonon polaritons in low-symmetry crystals, highlighting the role of broken symmetries in dictating the polariton response and associated nanoscale-light propagation features. We also discuss emerging opportunities for polaritons in lower-symmetry materials and metamaterials, with connections to topological physics and the possibility of leveraging anisotropic nonlinearities and optical pumping to further control their nanoscale response

    Probing the close environment of young stellar objects with interferometry

    Full text link
    The study of Young Stellar Objects (YSOs) is one of the most exciting topics that can be undertaken by long baseline optical interferometry. The magnitudes of these objects are at the edge of capabilities of current optical interferometers, limiting the studies to a few dozen, but are well within the capability of coming large aperture interferometers like the VLT Interferometer, the Keck Interferometer, the Large Binocular Telescope or 'OHANA. The milli-arcsecond spatial resolution reached by interferometry probes the very close environment of young stars, down to a tenth of an astronomical unit. In this paper, I review the different aspects of star formation that can be tackled by interferometry: circumstellar disks, multiplicity, jets. I present recent observations performed with operational infrared interferometers, IOTA, PTI and ISI, and I show why in the next future one will extend these studies with large aperture interferometers.Comment: Review to be published in JENAM'2002 proceedings "The Very Large Telescope Interferometer Challenges for the future
    corecore