18,342 research outputs found

    Tests of the Rockwell Si:As Back-Illuminated Blocked-Impurity Band (BIBIB) detectors

    Get PDF
    Two arrays of Rockwell's Si:As back-illuminated blocked-impurity-band detectors were tested at the Max-Planck-Institute for Astronomy (MPIA) at low background and low temperature for possible use in the astronomical space experiment ISOPHOT. For these measurements special test equipment was put together. A cryostat was mechanically modified to accommodate the arrays and special peripheral electronics was added to a microprocessor system to drive the cold multiplexer and to acquire the output data. The first device, a 16x50 element array on a fan-out board was used to test individual pixels with a trans-impedance-amplifier at a photon background of 10(exp 8) Ph s(-1)cm(-2) and at temperatures of 2.7 to 4.4 K. The noise-equivalent-power NEP is in the range 5 - 7 x 10(exp -18) WHz(exp -1/2), the responsivity is less than or equal to 100 AW(exp -1)(f = 10 Hz). The second device was a 10x50 array including a cold readout electronics of switched FETs (SWIFET). Measurements of this array were done in a background range of 5 x 10(exp 5) to 5 x 10(exp 11) Ph s(exp-1)cm(exp-2) and at operating temperatures between 3.0 and 4.8 K. The NEP ranges from less than 10(exp -18) at the lowest background to 2 x 10(exp -16) WHz(exp -1/2) at the highest flux

    Mathematical modelling of promoter occupancies in MYC-dependent gene regulation

    Get PDF
    The human MYC proto-oncogene protein (MYC) is a transcription factor that plays a major role in the regulation of cell proliferation. Deregulation of MYC expression is often found in cancer. In the last years, several hypotheses have been proposed to explain cell type specific MYC target gene expression patterns despite genome wide DNA binding of MYC. In a recent publication, a mathematical modelling approach in combination with experimental data demonstrated that differences in MYC-DNA-binding affinity are sufficient to explain distinct promoter occupancies and allow stratification of distinct MYC-regulated biological processes at different MYC concentrations. Here, we extend the analysis of the published mathematical model of DNA-binding behaviour of MYC to demonstrate that the insights gained in the investigation of the human osteosarcoma cell line U2OS can be generalized to other human cell types

    A fungal parasite selects against body size but not fluctuating asymmetry in Swiss subalpine yellow dung flies

    Get PDF
    Evidence for selective disadvantages of large body size remains scarce in general. Previous studies of the yellow dung fly Scathophaga stercoraria have demonstrated strong positive sexual and fecundity selection on male and female size. Nevertheless, the body size of flies from a Swiss study population has declined by ~10% 1993–2009. Given substantial heritability of body size, this negative evolutionary response of an evidently positively selected trait suggests important selective factors being missed. An episodic epidemic outbreak of the fungus Entomophthora scatophagae permitted assessment of natural selection exerted by this fatal parasite. Fungal infection varied over the season from ~50% in the cooler and more humid spring and autumn to almost 0% in summer. The probability of dying from fungal infection increased with adult fly body size. Females never laid any eggs after infection, so there was no fungus effect on female fecundity beyond its impact on mortality. Large males showed their typical mating advantage in the field, but this positive sexual selection was nullified by fungal infection. Mean fluctuating asymmetry of paired appendages (legs, wings) did not affect the viability, fecundity or mating success of yellow dung flies in the field. This study documents rare parasite-mediated disadvantages of large-sized flies in the field. Reduced ability to combat parasites such as Entomophthora may be an immunity cost of large body size in dung flies, although the hypothesized trade-off between fluctuating asymmetry, a presumed indicator of developmental instability and environmental stress, and immunocompetence was not found here

    Energetic underpinnings of yellow dung fly mating success in the field

    Full text link
    Foraging provides the basis for animal reproduction, but requires energy and time to be sustained, entailing a trade-off. Whereas females should maximize their time foraging for resources, males should minimize their foraging time by optimizing time budgets to maximize their access to mating partners. Mark-resight field studies are difficult and hence uncommon for small insects. Yellow dung flies (Scathophaga stercoraria L.) abound on pastures in cold-temperate regions across the northern hemisphere. Adult flies lick nectar from flowers for energy, but require small insect prey to produce eggs and sperm. Males wait for females around fresh cow dung, but at one point also need to replenish their energy and/or sperm reserves in the surrounding vegetation. Their foraging time budgets should depend on their body size, nutritional energy reserves, availability of sperm, competitor and female density. Marked male dung flies whose nutritional status was experimentally manipulated – water only (null control); water + sugar (energy replenishment); or water, sugar + Drosophila prey (energy and sperm replenishment) – were repeatedly observed on an experimental pasture for an entire day. Both nutrient types were expected to increase the mating success of especially large males. The total number of resighted males seen copulating was lowest for water-treated flies. Mating success was positively related to body size. The distance travelled between dung pats was greater for males fed sugar or prey and also increased with body size, while pat residence times decreased with size. No differences were found between the sugar- and prey-fed groups. Crucially however, there was no evidence in the field for a time budget or mating advantage of small males when nutrients were limited. Key Words body size, energy reserves, field observations, food manipulation, foraging, mating success, Scathophaga stercoraria, reproductio

    Vacuum pumping system for spaceborne passive hydrogen masers

    Get PDF
    The ultimate utility of hydrogen masers as highly accurate clocks aboard navigation satellites depends on the feasibility of making the maser lightweight, compact, and capable of a 5 to 7 year unattended operation. A vacuum pumping system for the maser that is believed to meet these criteria was designed and fabricated. The pumping system was fabricated almost completely from 6Al-4V titanium alloy and incorporates two or four sintered zirconium carbon getter pumps with integral activation heaters. The manner in which the getter pumps were mounted to insure that they will stand both the activation and the shock of launch is illustrated. Data on the total hydrogen capacity and pumping of this system is also presented
    • …
    corecore