34,216 research outputs found

    The effect of tip vortex structure on helicopter noise due to blade/vortex interaction

    Get PDF
    A potential cause of helicopter impulsive noise, commonly called blade slap, is the unsteady lift fluctuation on a rotor blade due to interaction with the vortex trailed from another blade. The relationship between vortex structure and the intensity of the acoustic signal is investigated. The analysis is based on a theoretical model for blade/vortex interaction. Unsteady lift on the blades due to blade/vortex interaction is calculated using linear unsteady aerodynamic theory, and expressions are derived for the directivity, frequency spectrum, and transient signal of the radiated noise. An inviscid rollup model is used to calculate the velocity profile in the trailing vortex from the spanwise distribution of blade tip loading. A few cases of tip loading are investigated, and numerical results are presented for the unsteady lift and acoustic signal due to blade/vortex interaction. The intensity of the acoustic signal is shown to be quite sensitive to changes in tip vortex structure

    Justifications in Constraint Handling Rules for Logical Retraction in Dynamic Algorithms

    Full text link
    We present a straightforward source-to-source transformation that introduces justifications for user-defined constraints into the CHR programming language. Then a scheme of two rules suffices to allow for logical retraction (deletion, removal) of constraints during computation. Without the need to recompute from scratch, these rules remove not only the constraint but also undo all consequences of the rule applications that involved the constraint. We prove a confluence result concerning the rule scheme and show its correctness. When algorithms are written in CHR, constraints represent both data and operations. CHR is already incremental by nature, i.e. constraints can be added at runtime. Logical retraction adds decrementality. Hence any algorithm written in CHR with justifications will become fully dynamic. Operations can be undone and data can be removed at any point in the computation without compromising the correctness of the result. We present two classical examples of dynamic algorithms, written in our prototype implementation of CHR with justifications that is available online: maintaining the minimum of a changing set of numbers and shortest paths in a graph whose edges change.Comment: Pre-proceedings paper presented at the 27th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2017), Namur, Belgium, 10-12 October 2017 (arXiv:1708.07854

    Linearisable third order ordinary differential equations and generalised Sundman transformations

    Full text link
    We calculate in detail the conditions which allow the most general third order ordinary differential equation to be linearised in X'''(T)=0 under the transformation X(T)=F(x,t), dT=G(x,t)dt. Further generalisations are considered.Comment: 33 page

    The pseudogap in Bi2212 single crystals from tunneling measurements: a possible evidence for the Cooper pairs above Tc

    Full text link
    We present electron-tunneling spectroscopy of slightly overdoped Bi2212 single crystals with Tc = 87 - 90 K in a temperature range between 14 K and 290 K using a break-junction technique. The pseudogap which has been detected above Tc appears at T* = 280 K. The analysis of the spectra shows that there is a contribution to the pseudogap above Tc, which disappears approximately at 110 - 115 K. We associate this contribution with the presence of incoherent Cooper pairs.Comment: 12 pages including 4 figures, to be published in Europhysics Letter

    Multiwavelength interferometric observations and modeling of circumstellar disks

    Full text link
    We investigate the structure of the innermost region of three circumstellar disks around pre-main sequence stars HD 142666, AS 205 N, and AS 205 S. We determine the inner radii of the dust disks and, in particular, search for transition objects where dust has been depleted and inner disk gaps have formed at radii of a few tenths of AU up to several AU. We performed interferometric observations with IOTA, AMBER, and MIDI in the infrared wavelength ranges 1.6-2.5um and 8-13um with projected baseline lengths between 25m and 102m. The data analysis was based on radiative transfer simulations in 3D models of young stellar objects (YSOs) to reproduce the spectral energy distribution and the interferometric visibilities simultaneously. Accretion effects and disk gaps could be considered in the modeling approach. Results from previous studies restricted the parameter space. The objects of this study were spatially resolved in the infrared wavelength range using the interferometers. Based on these observations, a disk gap could be found for the source HD 142666 that classifies it as transition object. There is a disk hole up to a radius of R_in=0.30AU and a (dust-free) ring between 0.35AU and 0.80AU in the disk of HD 142666. The classification of AS 205 as a system of classical T Tauri stars could be confirmed using the canonical model approach, i. e., there are no hints of disk gaps in our observations.Comment: accepted by Astronomy & Astrophysic

    An improved cell-volume analyzer

    Get PDF
    Design and operation of cell-volume analyzer friction, glaze ice, and studded tire effects on highway
    corecore