34,216 research outputs found
The effect of tip vortex structure on helicopter noise due to blade/vortex interaction
A potential cause of helicopter impulsive noise, commonly called blade slap, is the unsteady lift fluctuation on a rotor blade due to interaction with the vortex trailed from another blade. The relationship between vortex structure and the intensity of the acoustic signal is investigated. The analysis is based on a theoretical model for blade/vortex interaction. Unsteady lift on the blades due to blade/vortex interaction is calculated using linear unsteady aerodynamic theory, and expressions are derived for the directivity, frequency spectrum, and transient signal of the radiated noise. An inviscid rollup model is used to calculate the velocity profile in the trailing vortex from the spanwise distribution of blade tip loading. A few cases of tip loading are investigated, and numerical results are presented for the unsteady lift and acoustic signal due to blade/vortex interaction. The intensity of the acoustic signal is shown to be quite sensitive to changes in tip vortex structure
Justifications in Constraint Handling Rules for Logical Retraction in Dynamic Algorithms
We present a straightforward source-to-source transformation that introduces
justifications for user-defined constraints into the CHR programming language.
Then a scheme of two rules suffices to allow for logical retraction (deletion,
removal) of constraints during computation. Without the need to recompute from
scratch, these rules remove not only the constraint but also undo all
consequences of the rule applications that involved the constraint. We prove a
confluence result concerning the rule scheme and show its correctness. When
algorithms are written in CHR, constraints represent both data and operations.
CHR is already incremental by nature, i.e. constraints can be added at runtime.
Logical retraction adds decrementality. Hence any algorithm written in CHR with
justifications will become fully dynamic. Operations can be undone and data can
be removed at any point in the computation without compromising the correctness
of the result. We present two classical examples of dynamic algorithms, written
in our prototype implementation of CHR with justifications that is available
online: maintaining the minimum of a changing set of numbers and shortest paths
in a graph whose edges change.Comment: Pre-proceedings paper presented at the 27th International Symposium
on Logic-Based Program Synthesis and Transformation (LOPSTR 2017), Namur,
Belgium, 10-12 October 2017 (arXiv:1708.07854
Linearisable third order ordinary differential equations and generalised Sundman transformations
We calculate in detail the conditions which allow the most general third
order ordinary differential equation to be linearised in X'''(T)=0 under the
transformation X(T)=F(x,t), dT=G(x,t)dt. Further generalisations are
considered.Comment: 33 page
The pseudogap in Bi2212 single crystals from tunneling measurements: a possible evidence for the Cooper pairs above Tc
We present electron-tunneling spectroscopy of slightly overdoped Bi2212
single crystals with Tc = 87 - 90 K in a temperature range between 14 K and 290
K using a break-junction technique. The pseudogap which has been detected above
Tc appears at T* = 280 K. The analysis of the spectra shows that there is a
contribution to the pseudogap above Tc, which disappears approximately at 110 -
115 K. We associate this contribution with the presence of incoherent Cooper
pairs.Comment: 12 pages including 4 figures, to be published in Europhysics Letter
Multiwavelength interferometric observations and modeling of circumstellar disks
We investigate the structure of the innermost region of three circumstellar
disks around pre-main sequence stars HD 142666, AS 205 N, and AS 205 S. We
determine the inner radii of the dust disks and, in particular, search for
transition objects where dust has been depleted and inner disk gaps have formed
at radii of a few tenths of AU up to several AU. We performed interferometric
observations with IOTA, AMBER, and MIDI in the infrared wavelength ranges
1.6-2.5um and 8-13um with projected baseline lengths between 25m and 102m. The
data analysis was based on radiative transfer simulations in 3D models of young
stellar objects (YSOs) to reproduce the spectral energy distribution and the
interferometric visibilities simultaneously. Accretion effects and disk gaps
could be considered in the modeling approach. Results from previous studies
restricted the parameter space. The objects of this study were spatially
resolved in the infrared wavelength range using the interferometers. Based on
these observations, a disk gap could be found for the source HD 142666 that
classifies it as transition object. There is a disk hole up to a radius of
R_in=0.30AU and a (dust-free) ring between 0.35AU and 0.80AU in the disk of HD
142666. The classification of AS 205 as a system of classical T Tauri stars
could be confirmed using the canonical model approach, i. e., there are no
hints of disk gaps in our observations.Comment: accepted by Astronomy & Astrophysic
An improved cell-volume analyzer
Design and operation of cell-volume analyzer friction, glaze ice, and studded tire effects on highway
- …