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ABSTRACT

A potential cause of helicopter impulsive noise, commonly called
blade slap, is the unsteady 1ift fluctuation on a rotor blade due to
interaction with the vortex trailed from another blada. The relation-
ship between vortex structure and the intensity of the acoustic signal
is investigated. The analysis is based on a theoretical model for
blade/vortex interaction, due originally to Widnall. Unsteady 1ift on
the blades due to blade/vortex interaction is calculated using linear
unsteady aerodynamic theory, and expressions are derived for the
directivity, frequency spectrum, and transient signal of the radiated

- noise. The inviscid rollup model of Betz is used to calculate the

velocity profile in the trailing vortex from the spanwise distribution
of blade tip loading. A few cases of tip loading are investigated, and
numerical results are presented for the unsteady 1ift and acoustic sig-
nal due to blade/vortex interaction. The intensity of the acoustic

signal is shown to be quite sensitive to changes in tip vortex structure.
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LIST OF SYMBOLS

>

n wnvw -

z

reference length, blade semichord
Ansteady section 1ift coefficient

speed of sound

i

directivity function, eqn. (3.27)
wnondimensional distance; vortex to blade in semichords
=mondimensional acoustic wavenumber bow/c
wavenumber in x, y-direction
-Tift/unit span
=blade normal Mach number; U/c
- -pressure
.Fourier transform of the pressure
= (x2 + y? + z2), also radial coordinate in trailing vortex
Strouhal frequency, g = Jbo/U :
‘Doppler shifted Strouhal frequency
blade interaction length in semichords
-retarded time, eqn. (2.3)
‘convection velocity along the blade
blade velocity
circumferential velocity in trailing vortex
vertical velocity as a function of £, fig. 3
Fourier transform of vertical velocity in wavenumber o
vertical velocity as a function of t'

Fourier transform of vertical velocity in freguency S




——

Xs¥s2Z Cartesian coordinate system, y also spanwise coordinate of
-=chapter 4 -
- . a -angular velocity of the rotor (radians/second)
S Iy ‘bound circulation on the blade (chapter 4) B

T, .gircu!at_icn in the traiiing vortex {chapter 4)
) ~=delta function
A ~angle between blade and vortex, fig. 3
P ~fluid density
6 =wavenumber of Fourier transform in & , fig. 3
R ~coordinate system of fig. 4
® ~aerodynamic frequency (radians/second)
W -zacoustic frequency (radians/second)
Q .blade passage frequency (radians/second)




INTRODUCTION

-The sound generated by a helicopter rotor can be categorized as
either "rotational" or "broadband" noise. Rotational noise is charac-
<terized by a periodic acoustic signal giving rise to line spectra at the
:blade passage frequency and its harmonics. Broadband noise is nonharmonic
* ..~and has a continuous spectrum. ' ‘
-Rotor noise is due to the combined effect of several complex acoustic
F%nechanisms£1]Sources of rotational noise include steady and periodig blade
| Joading, and at sufficiently high blade Mach numbers, volume disp]acemenf
.-and nonlinear aerodynamic effects. 8Broadband noise arises from randomly
wvarying blade forces, due for example to atmospheric turbulence.
=Under certain flight conditions, helicopter rotor operation produces
--an impulsive, highly directional noise, repeated at the blade pasﬁage fre-
=quency. Commonly referred to as "blade slap," it is the predominant acous-
tic effect when present. At least two mechanisms can be responsible for
":blade slap. One is shock formation due to local transonfc flow on the
=@ vancing biade side. Another is the unsteady 1ift fluctuation on a blade
-caused by interaction with the tip vortex trailed from another blade. This
blade/vortex interaction is the subject of the present investigation.
A rotor blade leaves behind a continuous vortex sheet due to spanwise
"1ift variation. The inboard sheet is diffuse and does not seem to induce
appreciable velocities at the rotor disc, while the more intense outboard
sheet rolls up and moves inboard, forming a concentrated tip vortex (fig. 1).
If flight conditions are such as to cause the rotor blades to pass in close

-proximity to these tip vortices, blade slap can occur.
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-Fig. 2 depicts schematically -the 1oci of tip vortices and important

. blade/vortex interactions for single and tandem rotors. As indicated by
the sketch, the essence of the blade/vortex interaction problem is that
of a long blade passing obliquely over a vortex. For the case of small

-«angles between the blade and Vortex, the interaction occurs over a signi-

ficant portion of the blade span, so that two-dimensional aerodynamics can ... -

be used to model the problem except near the blade tip. . Comparison of
-figs. 2a and 2b indicates that blade/vortex interactions are more.1ike1y'
-to-occur at small angles for the case of the tandem rotor, although recent
—aexperimental evidence [2] indicates that such interactions can be an im-
- sportant source of noise for single rotor helicopters as well.

-=4fdnall [3] has developed a theoretical model for blade/vortex inter-
-action. The unsteady spanwise 1ift distribution is computed on a two
adimensional airfoil passing obliquely over an infinite 1ine vortex. This
Jift distribution is then taken as the boundary condition on a finite blade
4in the calculation of the acoustic farfield. The Widnall model has since
-been refined by Chu [4] in order to incorporate sweep and convective fluid
ef ects. '

In Widnall's original investigation, the tip vortex is modelled as a
potential vortex. The viscous core is taken into account by locating the

—center of the vortex an "effective distance" below the blade, defined by

= vh2 Z
heff hactua'l + Tcore
where r is the radius of the vortex core.

core

The potential vortex model is convenient 1in that it affords an

essentially analytical treatment of the problem. It gives good agreement

OF POOR QUALsTy

e
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with experiment for square tipped blades. For the case of the blade
.zcutting through the vortex core, experimental results show a plateauing of
-both pressure fluctuation on the blade and radiated noise. This effect is
-saccurately prédicted by the theory, provided rcore has been selected
-appropriately.

In the present study we examine the relationship between vortex
~structure and the acoustic pulse, in an attempt to identify features of the
£tip vortex that make the most damaging contribution to the radiated noise
Jevel. We have developed a numerical -analogue of Widnall's analysis to com- -
pute the unsteady 1ift on the blade and the farfield acoustic signal asso-

£iated with a vortex of arbitrary vorticity distribution.

We are also interested in predicting vortex structure given the dis-
-tribution of blade loading, so that we can directly relate rotor blade
~design characteristics to acoustic performance. Recently this problem has
received considerable attention in the study of aircraft wéke turbulence,

--where attempts have been made to predict the trailing vortex structure in
the wake of an arbitrar11y loaded aircraft wing. Donaldson [5] has shown
:that the long forgotten model of Betz [6] can be successfully applied to the
problem. Betz assumes that the circulation and moment of vorticity of the:”:
Anitially flat trailing vortex sheet are conserved during the rollup process,
and derives a relationship between the spanwise coordfnate in the flat wake
and the radial coordinate in the fully rolled up trailing vortex.

-Donaldson shows that complicated spanwise loading configurations gener-

ate a discrete set of trailing vortices, such that each segment of the dis-

tribution contained between relative maxima or minima in the loading rolls
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up into a single trailing vortex. Although helicopter blade loading
~fluctuates widely during flight, the position of maximum Tloading Ean'be

--roughly estimated at 75% of blade spanL7JThe loading falls off mono-

. tonically to ;éro at the blade tip. Hence, we need only consider the outer
:25% of blade span in the determination of tip vortex structure. We assume
that the tangential blade velocity is uniform over this length.

The Betz model is easily adapted to a numerical scheme. We apply

-4t here to a few different loading configurations, holding the location

—-zand magnitude of the maximum blade loading constant for all cases. The
=choice of loading conTigurations is somewhat arbitrary, as Tittle is known
=about the precise distribution of tip loading on helicopter blades. The

-~examples have been selected to illustrate salient features of the model
-and to suggest general guidelines for design to minimize noise.

~Finally, we discuss some general aspects of noise}generation due to
-blade/vortex interaction and recent experimental attempts to minimize

-blade slap through tip shape modification. [2, 8]
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2. -UNSTEADY AERODYNAMICS OF BLADE/VORTEX INTERACTION

--We wish to compute the unsteady 1ift distribq;ion on a two dimen-
-sional airfoi] passing obliquely over an infinite vortex filament. From
-1inear aerodynamic theory, this unsteady 1ift cén be calculated by re-
-quiring the condition of no flow thrbugh the airfoil in the presence of

.--the upwash field induced by the vortex.

2.1 The Upwash Spectrum Due to Blade/Vortex Interaction

--The -geometry of blade/vortex interactioh is depicted in fig. 3.
~Blade/vortex separation is h, angle of obliqueness A. As is standard
in unsteady aerodynamics, all quantities have been nondimensionalized by
the blade velocity U and blade semichord bo' The coordinates are fixed
in the fluid.
=We define the spatial coordinate £ measured perpendicular to the
~<yortex in the plane of the airfoil. Then given the distribution of
circumferential velocity in the vortex, along with h and A, the upwash
“~~fnduced at the airfoil location at a given instant can be written as
w((g). Using Fourier transforms, wo(E) is represented as a distribution,

in spatial wavenumber o, of sinusoidal gusts.

W (g) = J wo(c)eiogdc
" ~ (2.1)
W (o) = 5_‘;( WO(E)e'iong

As the blade passes over the vortex, the upwash pattern is convected

along the span with nondimensional convection speed Uc’ given by

e

-%



c tan A (2.2)

This upwash can be written as w(t'), where t' is the "retarded time"

defined by

t' = t -2 ’ (2.3)

-We define the nondimensional aerodynamic frequency

)

- b
§ = —2 | the Strouhal number. (2.4)
U

|

Here we have used the symbol '<' in order to distinguish the aerodynamic
frequency from the acoustic frequency that appears in Chapter 3.

Using Fourier transforms, the unsteady upwash w(t') is represented

-as a distribution of sinusoidal gusts of frequency S.

‘w(t') =J W(s)e'St'gs
- (2.5)

W(s) = -zlﬂJ w(t')e 1St g

We can use eqgns 2.1 to express the upwash spectrum, W(S) of egns 2.5,
in terms of the spatial upwash distribution wo(g). An airfoil passing
over a sinusoidal gust of spatial wavenumber experiences velocity fluc-

tuations of frequency

= gcosA (2.6)

wmi

. T

R e Bl
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-*From geometry,

LI - (2.7)

cosA

These relations are substituted into eqns. (2.5) to give tne upwash spectrum,

WB) = | W (e e

-0

—=r) = (2.8)

cosA cosA o( o)

5

for o= ost

2.2 - Unsteady Lift Due to Blade/Vortex Interaction

.A-qust of frequency S causes a sinusoidal 1ift variation along the span

< “4(k x-St) -iSt!
L(x,t;8) = L (S.n)e % = L_(3.A)e o (2.9)

-dhere LO(S,A) is an (as yet) undetermined complex 1ift amplitude. Since the
purpose of this work -is to determine the effects of tip vortex structure
upon the acoustic signature, we have- used the incompressible theory of

Filotas [9] to calculate the unsteady 1ift due to one such oblique sinusoidal

-gust. Compressibility effects are thereby excluded for reasons of simplicity

-and consistency with ref. 3. It is felt that these effects would not essen-
tially alter the results of the present study. We are currently using the
more complex unsteady aerodynamic theory of Amiet [15] to investigate the

acoustic ratiation from blade/vortex interaction at higher frequencies in a

-compressible flow.

The Filotas theory gives the unsteady 1ift due to an oblique sinusoidal

gust as
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S
L(x,t,S) pU bocL

CL = 2mal - :

a = W(s)el (kx-St) (2.10)

-where a is the instantaneous angle of attack,
| .and T = T(oyA) = T(E§§K’A) is the (complex) "1ift transfer function"
~of Filotas, given in Appendix B.

T-relates the magnitude and phase of the unsteady 1ift to thaf of

-the incident sinusoidal gust, analogous to the well known Sears' function

|
1
--for the case of a parallel blade/gust interaction. T=1 at zero reduced
frequency (steady upwash case). As frequency tends to infinity, T
~approaches zero as the infinite number of upwash oscillations become
=mutually self-cancelling over the chord of the airfoil.
--Comparing eqns (2.10) and (2.9), we have for the (complex) unsteady

14t amplitude |
s
cosA’®

LO(E,A) = 2mpU%h T(Sn)u(S) (2.11)

The unsteady 1ift at a spanwise station x is found by integrating

eqn (2.9) over all frequencies, as the inverse Fourier transform

. T
| Lit') = | L (s,ne° as e (2.12)
e . .\{,\",'\‘L
(S
? For reference, we include the forward transform cﬁkcigfjgwﬁ
| N
t - @ o
s - 1_ t 1St' 1

LO(S,A) = ZHJ L(t')e dt (2.13)

-0

o w————— i cn
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3. -ACOUSTIC RADIATION FROM BLADE/VORTEX INTERACTION

-We now analyze the acoustic fie1q-dye to blade/vortex interaction.
.The unsteady spanwise 1ift distribuf{on.pEeViouély calculated is now
taken as a boﬁndary condition on a blade of finite length in the solution
of the acoustic wave equation.

3.1 Problem Formulation

-.#We assume that the blade chord is smaller than a wavelength, so
=that the unsteady 1ift may be modeiled as a line of acoustic dipoles,
amoving with velocity U in the y direction (fig. 4).

The governing equation for the unsteady pressure is

2
v2p = _1__3_2. (3.1)
c? at? ‘ .

< Defining an effective blade/vortex interaction length So° the boundary

-zcondition may be written

L p(%¥,0) - P (xsy,0) L (t-x/U_)8(y-Ut) |x|<sy

(3.2)
= 0 |x]>s,
.
Dimensional variables have been introduced temporarily for the sake of
clarity. L(t-x/Uc) is the unsteady 1ift of egn. (2.12), with Uc the
phase velocity with which the 1ift pattern is convected along the blade,

..from eqn. (2.2).

A ety sy L e
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-Returning to a nondimensional formulation with reference quantities

-:blade velocity U and semichord bo’ this boundary condition is written

PT(x2y,0) =P (x,y,0) = L(t-x/U_)&{by(y-t)} x| <5

= 0 |x|>so

- swhere the dimensions of pressure p~force/length? and section 1ift

wL,l-'force/‘length have been retained.

3.2 Transforming the Problem

=We introduce the Fourier transform in x, y, and t, defining the

--transform pair

] | ik + dky -ist
w2 3) 9L = P s K, s ’ S
P(x,¥,2,t) PRY (kx ky S;z)e dkxdkyds
: ' -1k x-1k y+ist
P(kx,ky,s;z) = p(x,y,z,t)e dxdydt
- wb

where S is nondimensional frequency, -2
u
The Fourier transform of the boundary conditions is given by
eoso
AP(kx,ky,S) =I[J L(t-x/Uc)G{bo(y-t)} e

-0 =S

(o]

-ik_x-ik y+iSt
X yy dxdydt

(3.3)

(3.4)

(3.5)

]

T .
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.From the properties of the delta function, the only contribution to

the y-integral occurs at y=t. Using

[fd(au)du = .

-<X)

|

-~<we perform the y 1htegration.

o $
0 . -1k x-1k y+ist
ﬁzAP(kx,ky,S) = B;L(tfx/uc) e dxdt (3.6)
it £ -so

To evaluate the t integral, we introduce the retarded time t', as

=in-eqn. (2.3).

- s0 that
I ) )
-ik x i(S-k )(t'+x/U
AP(kx,ky,S) = L{t)e *e y € dxdt' (3.7)
e OO _so
Regrouping,

S .

(o]

[ FL0(s-k )/U Tk I (T i(s-k. )t
yooeox { YU odt'bdx (3.8)

Ap(kx,ky,S) = Je L(t')e
-5 -®

‘The bracketed term in eqn. (3.8) is the Fourier transform of the

unsteady 1ift in the frequency parameter S-ky. With reference to

gt ot TH gy ¥ o O

PR O S
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-eqn. (2.13), we therefore identify S-ky as the aerodynamic frequency S,
=giving the transform of the unsteady 1ift as the unsteady 1ift spectrum
LO(S) (within a factor of 2m). Since P is the Fourier transform of the
-acoustic signal, we see that a Fourier component’of unsteady 1ift of
frequency S on the moving boundary will be perceived at acoustic frequency
S in the sound field. This 1is usually referred to as the Doppler shift.
=.Eqn. (3.8) then becomes
So -
- 1(S/Uc - kx)x )
~ VAP(kx,ky,S) = ZvLo(S) e dx (3.9)
“So. .
.The x integration is straightforward, giving the Fourier transform of

=the boundary condition as

S‘In{so(S/UC - kx)}

- 41 s -
SAP(k_,k,,S) = —L (S) = (3.10)
Xy’ b. "o
0 (S/u, - kx)
We now take the Fourier transform of egn. (3.1), giving
d?p 2 4 2 2
— - k - = .
0 (kx y k%)P 0 (3.11)
where the relation k=S/c has been used.
The solution to eqn. (3.11) is written
:zJExhrkyi’:k2
-P(kx,ky,S) = A(kx,ky,S)e (3.12)

where A can be complex.
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.The argument of the exponential in egn. (3.12) must be purely
--complex for waves that are radiated into the farfield. This establishes

-as-a cutoff condition
k2> kx2 + gyz for non decaying waves (3.13)
=-From geometry kz = VEz-kx’-gyz » S0 that eqn (3.12) can be written
HHk 2z

- - 2
Plkyok ) = Alkyky.S)e (3.14)

. =Lonsidering only those waves that propagate outward from the boundary,

- .==s0 that the quantity tkzz is always positive, we define

fvk<-k_*- z
for z > 0, p¥ = ate x Y
, (3.15)
_ - -i«Ez-Exz—E < 2z
forz <0, P =Ae y
-We now impose the transformed boundary condition of eqn. (3.10). .
- : ~ sin{s (g/U - k)
-t = LS 0 ' c X
10 0 (S/Uc-kx)
In addition, we require that the pressure discontinuity be symmetric
across the boundary, that is
|
apt _ op” |
oz 2z > (3.16)

2=0

leading to At = -A”,
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-Application of these two boundary conditions determines the constants
A+;and A", giving the Fourier transform of the pressure as

_ sin{s_(S/U_-k.)}
P*(kx,ky,S) - ;%’lLO(S) 0o~ € X

i o (S/U-k,)

(3.17)

Taking the inverse transform defined by egns. (3.4) gives the pressure

| field as
R . -sin{s (§/U -k, )} dizvke-ki-k
'%v(Xay:Z,t) = _———12 JJJ LO(S) ~0 c X e Xy
| (2m)*b, ) (S/U -k, )
ik_x+ik y-iSt ~
e X y dk, dk, dS (3.18)

3.3 Evaluating the Farfield Pressure

. The pressure in the farfield is obtained by performing the inte-

- -grations indicated in eqn. (3.18) in the Timit of vX“+y“+z%o. We take
~advantage of the farfield asymptotic behavior of the integrand to carry
-out the integrations over kx and ky’ using the method of stationary phase

[1o0].

In general the method of stationary phase utilizes the self cancelling
oscillation of an exponential factor in an integrand, allowing the con-
tribution of the integrand to be neglected everywhere except in the neighbor-
~hood of one or more critical points.

We identify the "phase" of the integrand in eqn. (3.18) as

x .
¢ =2tk Z+ Kk, L+ KR T k7 (3.19)
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If the phase is a rapidly increasing or decreasing function of
i

kx or ky, the exponential e ™ alternates rapidly in sign with a change

n k, or ky. In the limit of x,y,z+ <, these oscillations become mutually
.self cancelling, so that contributions to the integral occur only in the
-wicinity of those points at which the phase is rendered "stationary" with

--respect to kx and ky. That is,

. B . (3.20)

k * = k_x.
X r (3.21)
* =

-where asterisks have been used to identify kx and
kj evaluated at the stationary point.

-From geomeFry, kx* and ky* describe a wave that propagates radially
-~outward from a point source. Physically, the method of stationary phase
tells us that only these waves are present in the farfield limit.

Whitham [11] presents the result for application of the method of
stationary phase to multiple integrations. If we write eqn.(3.18) in the
form

~izW ikxx+ikyy-iSt

p(X,Y,2Z,t) = JJJ F(kx,ky,s)e e dkxdkyds (3.22)

-Q0
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-where
- } _ sin{s_(S/U_~k.)}
Flk, ok ,§) = ——I—b L (§) ——2—C X
J (27)2 (S/U_-k_)
) cC X
, = - _ 2y 2
.and N(kx,ky,k) /K2 k -k,

==then application of Whitham's formula leads to

8kx8ky kx*’k *

N ‘1/2
»ép(x,y,z,t). = JQF(kx*sky*,g)(%;)[ dEtI W l ]
y

* . _% * _.TT t
eikx x+1ky*y 1zw(kx ,ky*,k) i sgnil i

- Using kx* and ky* from egns. (3.21), we evaluate

-2 2 2, %2
- *&s *
3 XS y k rz
kx*,ky*
and S = sk* = s(1-m &)

‘where the relation k = MS has‘been used.

(3.23)




-22 -
‘These expressions are substituted into eqn. (3.23) to give, after

~some algebra

= ~ sin{s_S[tan A (1-ML) -MX]}
Plx,y,z,t) = iL_{S(1-ML)} 0 r’_r
2o ° r S[tan A (1-M) -MX]

(3.24)

1S (Mr-%)

%',Ms e ds

N

-where we have substituted Uc = 1/tanA.

=Equation (3.24) could equivalently have been expressed as an inte-
-~gral over aerodynamic frequency S rather than observed frequency S. The
‘Jatter seems the more reasonable choice because it clearly indicates that

:we are evaluating the pressure as an inverse transform of the farfield

- “frequency spectrum.

P(x,y,2,t) —21? J‘ P(S) e” 15t gs

~We change to spherical coordinates, with reference to fig. 4.

X = rcos8siny
Y = rcosécosy
Z = rsind
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S and S are now related by
S = S(1-Mcosécosy) (3.25)

«and equation (3.24) becomes

1 [, 1
- p(r,0,¥,t) = ?EF'J i B;-LO{S(I-Mcosecosw)}
- (3.26)
4gsin{SOS[tanA(I-Mcosecosw)-McosesinW]} sin® MSeis(Mr-t)dS

S[tanA(1-Mcos6cosy) -Mcosgsiny]

3.4 Directivity of Blade/Vortex Interaction Noise

Using relation (3.25), we define the acoustic directivity factor

-appearing in eqn. (3.26) as

- = - - ' -
51n{sOS[tanA Mcoses1ngy(1_Mcoseco§wlj}s1ne

D(o, ¢ §) = -
: (1-Mcosecosw)z{soS[tanA-Mcosesinw/(]_Mcosecosw)] (3.27)

Eqn. (3.27) is expressed as a function of aerodynamic frequency S,

in conformity with the conventional interpretation of the directivity
factor as a representation of the acoustic field due to a source of pre-
scribed frequency. For a given value of §, observed frequency S varies
throughout the field, so that writing the directivity in terms of S would

have been misleading.
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-Using eqn. (3.27), the farfield pressure of egn. (3.26) is written

. Ms ®
p(r,0,y,t) = (I-Mcosecosw)zi;g- iLo{S(1-Mcosecosw)}D{e.w,s(1-Mcosecosw)}

4S(Mr/b_-t)
Se ) ds (3.28)

-or equivalently, in terms of S,

Ms0 ® ~ - 1[§/(1-Mcosecosw)](Mr/bo—t) .
B(rs8,u,t) = 5= AL {S}D{8,u.515 e _dS (3.29)

2rr

-00

where r has been redefined in dimensional terms.

The directivity factor of eqn. (3.27) can be expressed in terms of

i, the acoustic wavenumber at the blade location.

-Using the relation K = MS, we write

- sin{s E[tanA/ - cosBsiny/ (4. 5 1}sing
D(8,u,K) = 0 M (1-Mcosdcosy)

(1-Mcoseosy)? (s kltani/yy - cosesiny/ (1 _weoscosy) ! (3.30)

-For the case of the source dimension much smaller than a wavelength

(Es°<<1), eqn. (3.30) is seen to reduce to the directivity factor associ-

ated with a convected point dipole, derived in appendix A as
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D(e,y) = —=In® (3.31)
(1-McosBcosy)?

~-This expression applies in cases where the important blade/vortex
-Anteraction is confined to the tip region, as in the single rotor flow
—=geometry sketched in fig. 1.
~For effective blade/vortex interaztion lengths of the order of the
-blade length (Es°>>1), more 1ikely to occur for tandem rotor blade/vortex
~interactions, the directivity pattern becomes highly concentrated about
—«the combination for which

tanA cosfBsiny

M

I-Mcosacos¢crit

-For these critical values of 6 and ¢ , the directivity factof is
-also given by the point dipole expression, eqgn. (3.31). D(e,wcrit) is
plotted in fig. 5 for M = .53 at various values of A . (This corresponds
to the numerical case investigated in Section 6.) The maximum value of

acoustic
BN

yErit
+power is beamed strongly forward.

barely exceeds 50° for these cases, indicating that the

3.5 The Acoustic Signal Due to a Repeated Transient

The acoustic pressure of eqn. (3.28) is that due to a single blade/
-vortex interaction. For helicopter application, this transient is re-
peated at the blade passage frequency Q = ma, where a is the angular
velocity of the rotor and m the number of blades. (We note that although
the frequency content of the transient is Doppler shifted due to motion

of the blades, the repetition of the signal is perceived at the blade

crit - g S (3.32)
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..passage frequency for the case of a hovering helicopter.)
..For notational convenience, we write eqn. (3.28) as
-p(t) =J P(s)e 13
S0 that o
. | iSt
iP(S) = = | p(t)e ™" dt.
--«The repeated signal is given by
P(t) = 1  p(t-nT)
-#there T is the (nondimensional) period,
2r U
T = & —
Q bo
The spectrum of the repeated signal is
PS) = o=l T p(t-nm)e’Stat = ] e'SMTp(s)
n:-w n:-co
We can write
J e = 20 ¥ §(ST-2m)
n:..m m=-m
® 191 JRC Qb
2m 2 2mm 0 0
= = 8(S—) = —— ] &(S-m—)
T oo T T U

-

(3.33)

(3.34)

(3.35)

(3.36)
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so that
nbo © Qbo
Pr(S) = T Z G(S-m—U—) P(S) (3.37)
MPBex
and Qb
o, « 2b, -imT°t
Pplt) = 2 7 Pmp™) e (3.38)
M= -0

Qb
-Denoting Sm= anfz, the repeated acoustic sigpal is then written as
~the Fourier serjes

: Ms
pr(r,e,w,t) = i(]-Mcosecosw)2 0

7 (3.39)
X —U—° ILA{s (1-Mcosecosy) }n{s m 0
me-® M

:w,Sm(I-Mcosecosw)}sme
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4. THE BETZ VORTEX MODEL

The Betz [6] vortex model predicts -the approximate structufe of
.2 fully rolled up 1ift generated trailing vortex given the spanwise 1ift
-=d{stribution on a flat wing. It does not treat the intermediate staces
between the initially flat trailing vortex sheet and the rolled up vortex.
:The rollup process is assumed to be dinviscid and two dimensional.

We use the Betz method to predict the velocity profile in the tip
-yortex corresponding to an assumed form for the steady spanw1se blade
-Joading distribution. Donaldson's results -suggest that on.y the vort1c1ty
situated between the helicopter blade tip and the position ¢f maximum span-

~ise loading roﬁ]s up into the tip vortex. We assume that'the_maximum

. loading occurs at 75% of blade span, [7] and that the 1oadin§ falls off

-zmonotonically to zero at the blade tip, so that only the.outer 25% of
-blade radius contributes to tip voftex structure. AThevééhgential blade
wvelocity is taken to be uniform over this length.

-With reference to fig. 6, the spanwise coordinate on the b1ade is y,
fw‘ch.y=0 at 75% span, and y=L at the blade tip. The radial coordinate in
the fully rolled up trailing vortex is r. We denote the spanwise distribu-
tion of bound circulation as rb(y), and the radial distribution of circu-
lation in the vortex as rv(r}.

The result of the Betz method is the determination of a function
r=r(y) such that Pb(y) = Fv(r) at corresponding values of r and y, subject
to the constraint that rb and rv be related by three conservation relations

for two dimensional systems:
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1. The circulation is conserved.

L

r
dr, (y) max 4r

gb(o) = T v

0 o

I1. The centroid of vorticity remains at a fixed spanwise

location.

111. The second moment of vorticity is conserved, Jv=Jb=J.

o r
dr, (y) max dr (r)
= | [7(0)-y]2 =2 = 2 V'
J y(0)-y]* —g r? —iF
L o
-where Tmax is the radius within which all the vorticity

is contained in the fully developed vortex.

-0 ——W—dy= —d-rdl"

(4.1)

(4.2) -

(4.3)

. Equations (4.1,2,3) are further assumed to apply piecewise, beginning

at the wing tip, to successive portions of the sheet in toward the wing

root:
Y, T
dry (y) | dr(r)
—a-—'-'—y dy = ar dr
L o
_ 1 Vodr(y)
yly,) = IR A Y —dy dy
L

(4.4)

(4.5)
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yl rl
dry (y) L4, (r)
| DHly,) -y —gy— dy = | riep— dr (4.6)
L 0

~Rossow [12] uses the above equations to-obtain the relation between

-rand y as
] y
r = Ty (y,)dy (4.7)
. 'r‘;(yy bY1/™ .
: L
The circumferential velocity in an axially symmetric vortex is
- =found from
T (r) I {y(r)} :
v = b7 (4.8)

ve - 2mr , 2mr

WOk YW e e N ur s
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5. APPLICATION TO A NUMERICAL SCHEME

-In this section we outline the adaptation of previously derived

®  _.results to numerical computation.

5.1 The Betz Model , | e

Using egns. (4.7) and (4.8) it is quite straightférward to develop
.2 numerical procedure to predict the structure of the trailing vortex,
~given an assumed form for the spanwise distribution of bound circulation
=on the blade rb(y).
Referring to section 4, eqn. (4.7) is integrated numerically from
'y = 0 (corresponding to r = 0 in the-rolled up vortex) to y = L {corre-

<sponding to r For each pair of values (r, y) thus found, eqn. (4.8)

max)'
ds used to evaluate the circumferential velocity ve(r).‘ The vortex is
..assumed to be irrotational for1~>rmax, so that we use a potential vortex
~~mode]l (ve ~ 1/r) for this region.
We note that Vg = 0 is always used at r = 0. (This is necessary for
-subsequent computation.)

. 5.2 Blade/Vortex Interactions

From the circumferential velocity distribution computed as in section
5.7 and blade/vortex separation h, we begin by computing the upwash in the
plane of the airfoil (wo(E) of eqns (2.1). The Fourier transform indicated
-in eqns. (2.1) is then computed numerically, using a fast Fourier transform
(FFT) subroutine. The application of the FFT subroutine is described in
~yreference [13]."
-~-Given blade/vortex interaction angle A, the upwash spectrum at the

-airfoil location W(S) is obtained from eqn. (2.8){ and used in egn. (2.11) to

-give the spectrum of the unsteady lift Lo(§). The inverse transform indi-
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cated in egn. (2.12) is then evaluated through the use of the FFT sub-
—routine to give the unsteady 1ift due to a single blade/vortex interaction,
L(t').
Similarly for the pressure, the inverse transform of the farfield

spectrum is evaluated using the FFT subroutine to give the farfield signal

.{due to one blade/vortex interaction) of eqn. (3.28). Strictly speaking,

-we should evaluate the Fourier series of egn. (3.29) to give the signal due
-to a series of transients repeated at the blade passage frequency Q.
+#However, numerical evaluation of eqn. (3.28) shows that the nonzero exteﬁt
=of the transient due to a single interaction is of much shorted duration

:than the blade passage period T, so that the transient decays too rapidly

.to contribute acoustic energy to any subsequent pulses. Therefore, an

xinterval of the transient signal of duration T looks identical to one

--period of the signal due to rep=ated interactions.




6. RESULTS AND DISCUSSION

The model is applied to three tip loading configurations. For the
vortex corresponding to each of these cases, numerical results afe pre-
sented for thé unsteady 1ift .experienced by a blade interacting with the
ﬁortex and the associated acoustic signal over a range of interaction
gebmetries. General features of the noise due to blade/vortex interaction
a;e considered, and results of some recent experimental attempts to
minimize the problem through alteration of tip vortex structure are dis-
cussed in light of the theory.

6.1 Cases Investigated

Inputs to the model are:
(1) b,» blade semichord R A e
(2) Ugss» effective blade velocity
(3) Ty(y), distribution of bound circulation on the blade tip
. shedding the vortex for input to the Betz model .
(4) h, blade/vortex separation
(5) A, blade/vortex angle
(6) So effective blade/vortex interaction length :
(7) r,0,p, coordinates of the observer, fig. 4
(8) @, blade passage frequency
(9) p,c, fluid density and sound speed, taken for ajr at STP
Helicopter parameters used to perfprm the computations were those

of a Bell model UH-1H. Relevant specifications are listed below (from

ref. [14]).

5 o g et
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Number of Blades 2
. Rotor Diameter 48 ft.
-Blade Semichord 10.5 1in.
-avg. tip speed ‘ 780 ft/sec
--avg. gross weight -8000 1bs.
. blade passage frequency 65 rad/sec

Jo obtain an order of magnitude estimate of the maximum section load,
~amaximum loading was assumed at 75% blade radius, with spénwise loading
taken to fall off linearly from a maximum (Lmax) to zero at the blade root
-and tip. For two 24 ft blades supporting an 8000 1b helicopter, this gives

Pmax = 333 1bs/ft. Denoting maximum circulation by Fo, the relation

Lmax = pUI‘o from 1ifting line theory (with U at 75% radius)gives
T, = 238 ft2?/sec.

The three spanwise distributions of bound circulation assumed for

~the blade tip (outboard 25% span) are presented in fig. 7. ro is the same

for the three cases (elliptical, linear, and cos? circulation distributions).

For the acoustic parameters, effective blade/vortex interaction length

0
velocity was taken to be '75Utip’ or Ueff = 585 ft/sec, corresponding to

--+«@ Mach number of .53. Calculations were performed for blade/vortex angle

A =0, 15, and 30°, with blade/vortex separation distance h = 0, .2, .5, 1,

and 2 blade semichords investigated for each value of A.
-Observer coordinates were selected to yield the most intense acoustic
-signal for each case. (8, Vepit corresponding to Dmax from eqns. (3.31) and

(3.32) were computed for each value of A.) r = 1000 ft was used.

N 7 e enr ATt N w5

s_ was estimated as 2/3 of the blade length, or So © 16 ft. Effective blade

s

oy
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The cases investigated are summarized below.

I. .TJip Load Distribution (ro = 238 ft?/sec, y = 0 at 75% span,

y = Lat blade ti

p)

i) elliptical T = Tq T = (y/T)?

o1 - y/L)
2Ty

r,cos (ZL)

11) Linear T
141) cos® T

u

JI. Blade/Vortex Interaction and Acoustic Parameters

Sg = 16 ft

'Ueff = 585 ft/sec (M = .53)

v = 1000 ft

A=10° 6= 40.7°, ¥ =0°
A=15° 6 = 38.0°, ¢ = 23.3°

A= 30° 6 = 18°, y = B2.7°

6.2 Results

-Results are presented in figs. 8 through 27.

fig. 8
fig. 9 - 17
fig. 18 - 26
fig. 27

circumferential velocity profile in the vortices
corresponding to each loading case

unsteady section 1ift experienced at a spénwise s

-station during blade/vortex interaction

farfield acoustic signal due to blade/vortex
interaction

comparison of acoustic intensities
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6.3 Discussion

1) Trailing Vortex (fig. 8)
~The ‘structure of the trailing vortex, as predicted by the Betz
theory, is profoundly influenced by the slope of the loading function at
-the blade tip. In the case of the elliptical load distribution, for

.:which the loading falls off with infinite slope at the blade tip, a square-

~root singularity in circumferential velocity is predicted at r = 0. For the

—gos2.Joad distribution, zero slope at the blade tip leads to v 0 and

6
%—;’:= 0 at r = 0, and the maximum circumferential velocity occurs at a
~finite distance from the vortex center. The Tinear load distribution has
@ finite nonzero slope at the blade tip, giving a finite nonzero velocity
at r = 0 (requiring a velocity discontinuity here).
-~Adaptation of the theory to -numerical computation requires Vg = 0
at r = 0. This acts to reduce the severity of the singularity and the
-~discontinuity encountered in the elliptical and 1inear_]oadihg cases. The
_-effect of viscosity in the real fluid would also moderate thése Abrupt
features of the velocity profile. (Viscous effects were not coﬁgiderea
-here to avoid unnecessary complication of the analysis.)
“11) Upwash
The distribution of circumferential velocity in the trailing vortex
Trepresents the upwash encountered by a blade at zero blade/vortex separa-
tion. With an increase in separation, we see two effects:

(1) The amplitude of the upwash signal is decreased, as circumferential
velocity falls off with an increase in distance from the vortex
- .center (except in the immediate vicinity of r = 0 for the cos?
loading case).
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(2) The high frequency content of the upwash transient is diminished;
the signal is smoothed out as the blade passes further outside

. .~abrupt fluctuations in circumferential velocity that are con-
.centrated about the center of the vortex.

The blade experiences the most -concentrated, sharply peaked upwash
signal (i.e. largest high frequency content) through interaction with.the.
.trailing vortex for the case of elliptical loading. A more gradual
-variation in upwash is experienced for the cases of the linear énd coé2

-loading distributions. The peak to peak amplitude of the upwash signal is -

. ot

-.Jargest for elliptical loading, less for the cos? case, and smallest for the

:case of linear loading. With an increase in sweep angle (A), the upwash
<

. =signal becomes less concentrated, i.e. the high frequency content of the

signal is diminished.
1§1) Unsteady 1ift (figs. 9 - 17)
-The character of the unsteady 1ift signal can be expected to resemble

that of the upwash signal. Accordingly, the peak to peak amplitude of the

. unsteady 1ift signal is largest for the case of elliptical loading, less

for the cos? case, and smallest for linear loading, corresponding to the

" relative amplitudes of the'upwash signals. An increase in sweep angle

spreads out the unsteady 1ift signal as it does the upwash.
The relationship between unsteady 1ift and upwash is governed by the
" Filotas "1ift transfer function", which gives a decrease in the amplitude
of the unsteady 1ift signal with an increase in gust frequency and/or
sweep angle. We note also that the transfer function is unity for a
zero frequency gust (steady upwash case), but introduces an aerodynamic

-phase shift between upwash and unsteady 1ift at higher gust frequencies.
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Lonsequently, the degree of harmonic distortion in the unsteady 1ift signal

(relative to the upwash signal) is seen to,incrééséiﬁ?tﬁfén increase in the

~=high frequency content of the upwash signal. This is particularly evident

for the case of elliptical 1qading at small values of h, as this upwash
--signal is the richest in high frequency content.

iv) Acoustic Signal (figs. 18 - 26)

‘Ne have modelled the helicopter blade as a finite line of acoustic
~-dipoles. It is not surprising, then, that anaiysis of the acoustic radiation
-from a single convected point dipole affords much insight into the problem.

-Jhe farfield sound due to a convected point dipole of amplitude F0

+{point force) and sinusoidal frequency W, is derived in appendix A as

w
F -i( © ___)(t-r/c)
=p(r,6,y,t) = Ell.wo %-D(e,w)e J-Mcos6cosy
iy

~where the directivity factor D(8,y) = (]_M§;22c05¢)2

-~

-Two features of the dipole expression are of interest here:

(a) The magnitude of the acoustic pressure is proportional to
frequency, W+
(b) As indicated in section 3.4, convection acts to concentrate the
-acoustic power in the forward direction, giving rise to an in-
crease in the value of the maximum acoustic pressure attained
(over that of the nonconvected case). '
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(a) Frequency Dependence

The results clearly indicate the-dependence of the peak acoustic
pressure on frequency. We find, for example, that at h = O the amplitude
of the.upwash signal associated with elliptical loading is about twice that
for the cos? case, but that the acoustic signal for cos? loading is 34 db

—..down. This dramatic difference (corresponding to a fifty fold decrease in
.acoustic pressure) can be attributed to the abrupt (high frequency)
=character of the unsteady 1ift signal of the elliptical case relative to the

--=gradual (low frequency) character of the cos® case. Similarly, for small
-~alues of h, cos? loading gives a signal that is 10 db down from the corre-
~~sponding linear- loading case, even though the amplitude of the unsteady

1ift signal for the cos? case is larger.

-

(b) Effect of Sweep

The introduction of sweep causes a substantial reduction in radiated
noise, as demonstrated in fig. 27. As already indicated, an increase in A
_-~diminishes the high frequency content of the unsteady 1ift signal, which
can be taken as a partial explanation for the change.
A hore subtle effect is the relationship between A and the convection
-speed of the 1ift pattern through the fluid. Since the convected Mach
number of the wave along the moving blade is M/tanA, the effective Mach

-number of the wave through the still fluid is

Myer = Juz + (EMJ)2 = M/sinA (6.1)

so that M = sinA is the boundary between supersonic and subsonic wave

speeds.
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-Disturbances moving at subsonic speeds with respect to the still fluid
-radiate no sound; for M <sinA the only sound that is generated originates
at the ends of the blades and is due to the finite dimensions of the source.

-For this case values of (8, ¢ ) satisfying eqn. (3.32) do not exist, so

crit
that no concentration of the acoustic signal occurs. As a result, the

_-radiated noise is greatly reduced. (This case was not investigated

-numerically.)

-Lonversely, disturbances moving at supersonic speeds'are efficient
--acoustic radiators, and the intensity of the peak acoustic signal increases
~with Mach number. With reference to fig. 27, the diminution of the peak
«signal for A = 30° is due, in part, to the fact that the disturbance
s=velocity is barely supersonic for this case (Meff = 1.06).

At large values of A it must be remembered that the two dimensional
-@derodynamic model used is no longer valid, due to three dimensional effects

at the blade tip. At some point, the tip/vortex interaction becomes the

~ predominant acoustic source.

6. Blade-slap Minimization Through Tip Modffication

-Potential methods of blade slap minimization include reduced tip speed,
reduced disc loading, changes in blade design (area, twist, and shape) and
alteration of blade tip shapeL]]Of these, alteration of tip shape is of

- particular relevance to the present study, as this technique entails changes
in tip vortex structure that minimize noise.

The most significant result of this investigation with regard to tip
design is that the slope of the spanwise Toading distribution at the blade
tip strongly influences tip vortex structure and the associated intensity of

noise due to blade/vortex interaction. This result is consistent with recent
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experimental findings [8] that show substantial reduction in blade slap
intensity through the use of a tapered ("ogee") blade tip. (fig. 28a)
Another technique that has yielded positive results [2] makes use
of a "sub-wing" tip (fig. 28b). This design apparently divides the tip
~yortex into two less intense twin vortices that destructively interact
to produce a diffuse trailing vortex. However, more quantitative acoustic

data is needed to judge the efficacy of this method.
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7. - CONCLUSIONS
~Blade/vortex interaction is an important source of helicopter blade

slap. Several experimental studies indicate effective blade slap mini-

~mization through modification of tip design in an effort to alter vortex

structure.

—Theoretical analysis of blade/vortex interaction, through application

. of Tinear unsteady aerodynamics and the.acoustics of a moving soufce, is
=able to account for the essential role played by many of the parameters

-=that govern the occurrence of blade slap.

-The -numerical model developed to extend the analysis to tip vortices

:0f .arbitrary structure constitutes a powerful investigative tool. The

-.method affords useful insight into the relationship between the character

-of the tip vortex and the associated noise due to blade/vortex interaction.
The intensity of the noise was found to be quite sensitive to changes in

tip vortex structure.

“This model is applicable to blade/vortex interactions at smél]’

. ob’ique angles, for which the interaction occurs over a large portion of

the blade span. Such interactions are probable for tandem rotor helicopters.

For single rotors, blade/vortex interactions are 1ikely to occur at large
angles, for which the interaction is confined to the blade tip region.
Additional theoretical modeling is required to account for the three
dimensional asrodynamic effects associated with this case.
. Other effects the model is not equipped to handle include blade or
self-induced motion of the vortex filaments during blade/vortex interaction,
---curvature of the vortex filaments, and blade rotation. These problems deserve

future study.
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‘The aerodynamic theory used to model blade/vortex interaction
-strictly applies only to the casevof a ‘low frequency gust in an in-
compressible fluid. Making the appropriate low frequency assumption that

the blade chord is smaller than a wavelength, we neglect chordwise pressure

- variation in the unsteady 1ift calculation and model the blade as a line
-0f dipoles in the analysis of the acoustic field. At higher gust fre-
-Quencies or higher Mach numbers, compressibility effects become important,
.=and a more powerful aerodynamic theory such as that due to Amiet {15] is
~-required. The simpler aerodynamic mode! used here is sufficient to account
~for the essential details of the relationship between vortex strﬁcture and
the acoustic pulse. The additional refinement obtainable from consideration
--0f compressibility and high frequency effects was felt to be unnecessary
for this initial study. The extension to include the full effecté of com-

- -pressibility is currently underway.

Y e et ——y s 3
%w. Sutshhiy .
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~—~APPENDIX A: Sound Field Due to a Convected Point Dipole

The calculation of the sound field due to a convected point dipole
follows the éna]ysis.of section 3 (for a moving line of phased.dipq]es),
The simpler boundary condition, however, gives the faffie]d-bres§ute sig-

-.nal in integrable form for the case of harmonic oscillation.

MWe consider a point force of magnitude f(t), oriented normal! to the

=X~y .plane, moving with velocity U in the y direction.

“The governing equation for the unsteady pressure is
v2p=_]_ 3_2E

(A1)
c? at?

~with boundary conditions

8 = plx,y,07) - plx,y,07) = &(x)s(y-Ut)f(t) (A2)

-We introduce the Fourier transform in x,y, and t, defining the transform

- pair
i(k_x+k y-wt)
1 X yy
AT = P(k ,k sWs dk d
p(x,y z_t) 2m) J ( x Ky 20 Z)e dkx ydo
- A3
” -i(kxx +kyy-mt) (A3)
P(kx,ky,m;z) = [J[ p(x,y,z,t)e dkdydt

The Fourier transform of the boundary condition is given by

| Ak x+k_y-ut)
BP(kyskyr) = m s0sr-00 (e R et ()
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From the properties of the delta function, the only contribution to the
y integral occurs at y = Ut, giving

@

'AP(kx,k)',,m) = ”J f(t)s(x)e

-1k _x+i(w-k U)t
X Y dxdt (A5)

We define the frequency w = u-KyU, recognizing that a frequency w
located on the moving boundary is perceived at Doppler shifted frequency

w —in the field. Eqn. (A5) is then written

[® -k x iwt
“'fAP(kxak_ysw) = J‘S(x)e X rf(t)e dt| dx (A6)

- <]

Defining the transform pair

{ F@)e otys

f(t) =
” (A7)
| FE) = | f(e)elutat
' o
-we identify the bracketed term in egn. (A6) to be 2rF(w).
Then
. -ikxx
~:AP(kx,ky,w) = 2rF(w) §(x)e dx (A8)

Contribution to the x iptegral occurs at x = 0, giving the Fourier

transform of the boundary condition as

R S ram——————— > &
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BP(k, ok s0) = 21F (w) (A9)

whgre w = w-kyU

‘Taking the Fourier transform of eqn. (A1) leads, as in section 3, to

the expression

. . :tinEz-kxz-k z
Plxyaz,t) = A(kok e J (A10)

=Applying the boundary condition of eqn. (A9) and imposing the

-<additional requirement

LA
9z 9z 0 (A11)
zZ=
-~gives the constants Ai‘ = % vF(&).

" The unsteady pressure is then given by the Fourier integral indicated

-An eqn. (A3f,

—l——J [F(;)ei(kxx+kyy-mt)+iz/E2—k 7.k ¢

P(X,¥,z,t) = - X ydkx,dkydm (A12)

8n?
-
" As in section 3, the kx and ky integrations in the asymptotic farfield

Vimit can be evaluated by the method of statiocnary phase, giving the

farfield acoustic pressure as

ke A ko
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© .~ -juw(t-r/c)
p{X,¥.2,t) = T]EJ iF(w)—z;-i*’-e dw (A13)
rtc

-0

~ Changing to polar coordinates, with reference to fig. 4 ,

X = rcosfsiny

Yy = rcos6cosy

2 = rsind
gives
' m_ - -jw(t-r/c) .
wep(r,0,y,t) = Z%F-I iF(w)sing %-e dw : (A14)

-where ® = w(1-Mcosécosy)

For the case of a simple harmonic dipole of frequency Wy s

e = F°e-m°t | (A15)
~tre transform is given by
F(;) = 3%? °u4[--(t)e1'c‘xit:dt - ;%_{“ ei(;-wo)tdt
" folee) ) (A16)

Using w = “/(1-McosBcosy),eqn. (A14) then becomes

o N sin® 5~ (veosseosy) (t7/¢) -
p(r,e,\p,t) = oor 5(0)"(00) E—e 1% do
‘ (1-Mcosecosy)?
(A17)
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Lontribution to the integral occurs at @ = Wy giving the unsteady

pressure as

w
- F w -'](__..__9____. )(t'f’/C)
plr.o.w,t) = —2 -2p(s,yp)e 1-Mcos6cosy

2nr . ¢

where the directivity factor is defined by

» _ sind
| D(e,y) = {T-Mcos6cosy)?

(A18)

(A19)
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- APPENDIX B: Lift Transfer Function of Filotas Theory

The 1ift transfer function is used to calculate the unsteady 1ift
~due to an oblique sinusoidal .gust impinging on a two dimensional airfoil
-in incompressible flow (fig. B1). For a gust of nondimensional wave-

~=pumber ¢ = oobo’

'11(12'-- K)(1+ % sinA)

-exp{-io[cosA- 1}

J+2mo(1 + ‘5 sink)

“T(o,A) =

“V 1 +7m0(1+cos?A.+ mosinA )

R
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APPENDIX C:

Computer Program




COMPLEX*8 C (2048),¥% {20u48) ,cL,T,%0,L0,P

COMPLEX*8 CMPLX,CEXP

REAL L,LAMBDA,MACH,VTHET (1024),VR (1024}

DIMENSION GRAF1(512,7)

DIMENSION UU(514),V1(514),V2 (514) vusw),vu(siu) V5 (514),V6(514)

COMMON W,C,VR,R, THETA,PSI,LAMBDA, OMEGA,GAMMA,GAMMAO,MACH,RHO,SO,
BU,U,K,PI,UFLO,
CoOSLAM,TANLAY,COTHET, COSPSI,
DS,DSBAR,DT,DTP,DELZ, DR,
N,N2,NY

VARIABLES USED IN MALN PROGRAM:

BLDS: NO. OF ROTOR BLADES

BO:BLADE SEMICHORD (FERT)

CL:UNSTEADY SECTION LIFT COEFFICIENT PROM FILOTAS THEORY

DIREC:DIRECTIVITY FACTOR,EQN. 3.27

GAMMAOQ: LIRLULATION(FT**2/SEC}

GAMMA:NONDIMENSIONAL CIRCULRTLON(GAMMA-GAMMAO/BO*U)

GC:GRAVITATIONAL CONSTANT (LBM*FT/LBF*SEC**2)

H:VORTEX TO BLADE DISTANCE IN SEHICHORDS, SEE FIS 3.

.LAMBDA:ANGLE BETWEEN BLADE AND VORTEX, FIG.3 (RAD)

MACH:BLADE MACH NUMBER

ONEGA:ANGULAR FPREQUENCY OF ROTOR (RAD/SEC)

(CORRESPONDS TO ALPHA OF TEXT)

P:PRESSURE (LBF/FT#¥%2)

R,THETA ,PSIL: COORDINATE SYSTEM OF FIG.3

SO:BLADE INT @RACTION ‘LENGTH IN SEMICHORDS

U:BLADE V”LOCIIY[QT/SEC)

RIJO:FLUID DLﬂSITY(LHM/FT**B)

SBAR: STROUHAL FREQULNCY (AERODYNAMIC FREQUENCY) .

S: DOPPLER SIHLIFTED STROUHAL FRLQUENLY (ALOUSTIC PRBQUENC!)

UFLO: USLD IN UNDERFLOH CHECK

PI=3.1415926 o

B0=10.5/12.

50=16.,/B0

R=1000. B

DLGRAD=2.0%P1/360.0 -

L BN I eI

aoaocncon aoncocaactnaann
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TIYAD Y0Od 0
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LAMBDA=15, 0*DEGRAD
THETA=38.,*DEGRAD
PSI=23.3%*DEGRAD
U=585.
KACH=U/1100.
GAMMAO=238, , .
GANMA=GAMMAQ/ (BO*U) ‘ o,
GC=32.17 ’
RHO=,077/6GC
COTHET=COS (THETA)
COsPS1I=COS (PSI)
COSLAN=COS (LAMBDA)
TANLAM=TAN (LAMBDA)
N=2048
N2=HN/2
NU=H/U
po 100 M=1,N
C(4)=CMPLX(0.0,0.,0)
100 CONTINUE

TEN=10.0
UFLO=TEN** (-40,0)
Y0=0.0

" H=0.0 | - L ™

EEE Rk kR Rk Rk k kAR h bk hh bk kb bbb bbbk kb kb sk kbR

# TO AVOLD CONFUSION DUE TO THE NUMBER OF DIPFERENT CASES

* INVESTIGATLED, SUBROUTINE CALLS AND PLOTTING ROUTINES HAVE NOT

®# BEEN INCLUDED HERE. THE FOLLOWING SEQUENCE WOULD RETURN THE

* ACOUSTIC SIGNAL IN CCMPLEX ARRAY C:

* CALL BETZ (NLOAD) (SEE SUBROUTINE BETZ2)

* CALL TRNSFY ’

x CALL SOUND

SUBSTLTUTION OF *CALL LIFT®* FOR 'YCALL SOUND' WOULD RETURN THE

* UNSTEADY LIFT IN COMPLEX ARRAY C

3 3 s 223 3 T2 233332333333 3333 331233 133313333

-

LK 3K 3E B R B 3K N &
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SUBROUTINE BETZ (NLOAD)
BETZ COMPUTES THE CLRCUMFERENTIAL vELOCITY DISTRIBUTION IN THE
TRAILING VORTEX USING THE BETZ ROLLUP MODEL OP CHAPTER &, AND
EVALUATES THE VERTICAL VELOCLTY W AS A FUNCTION OF 2%, THE
SPATIAL COORDINATE PERPENDICULAR TO THE VORTEX.

(Z CORRESPONDS TO XCI IN TEXT, FIG 3)
SANPLING INCREMENT. IS DELZ, OVZR INTERVAL VRTSEP
W(1) CORRESPONDS TO Z=0. W(l,...1024) CONTALN VALUES POR POSITIVE
Z, W(1025,...2048) VALUES FOR NEGATLVE 2. VALUES ARE STORED IN
ORDER OF INCREASING Z

COMPUTATION PROCEDURE:

EQN 4.7 IS INTEGRATED NUMERICALLY AND USED W1TH FQN 4,8 TO COMPUTE
A SET OF N/2 CORRESPONDING VALUES RB(M) AND VCOR(M), THE RADIAL '
COORDINATE AND CIRCUMFERENTIAL VELOCITY RESPECTIVELY IN THE
RCTATIONAL PORTION OF THE TAILING VORTEX. VCOR IS THEN SAMPLED

AT 1NCRENENT DR OVER N/2 POINTS TO COMPUTLE VR, THE

CIRCUMFERENTIAL VELOCITY PROFILE IN THE TRAILING VORTEX. OUTSIDE
THE ROTATIONAL REGION (R>RB(N/2)) VR IS PROPORTIONAL T0 1/R.
UPWASH W IS COMPUTED FROM GEOMETRY,

NLOAD IS AN INDEX IDENTIFYING THE TIP LOADING CASE INVESTIGATED.
NLOAD=1 FOR ELLIPTICAL LOADING, 2 FOR LINEAR, AND 3 FOR COS*#*2,
COMPLEX*8 C(2048) ,W (2048) ,CL,T,4¥0,L0,P '

" COMPLEXA*8 CHMPLX,CEXP .

&

S I I

REAL L,LAMBDA,MACH, Ra(102u),vcoa(lozu),- R
VTHLT(IUZQ),V@(IOZU) : e e
INTEGER HNLOAD - e '
CO¥MON W,C,VR/R, THETN psx LAMBDA oquA GAHHA,GAHHAO,HACB RHO, ao,
BO U,H,PI,UFLO, :
COJLAI,TANLAM COTHET,COSPSI, O v
DS,DSDAR,DT,DTP,DELZ, DR, C g o
N,N2,NU B S
VRTSEP (2. O*PI/(BLDS*OMEGA*BO))*U*COSLAH SR
VRISEP=VRTSEP*U. ‘ e o




anaa

14

15
16
117

"100

DELZ=VRTSEP/FLOAT (N)
DR=DELZ/1.95
L=15./80
DY=(L/2.0) /N2
SuM=0.0

RB(1)=0.0
VCOR(1)=0.0

YY IS THE SPANKISE COORDINATE. (CORRESPONDS TO Y OF TEXT) YY=0 AT

75% SPAW, ¥Y=L/2 AT BLADE TIP. (IN TEXT, Y=L AT BLADE TIP)
VCOR (M) IS THE CIRCUMFERENTIAL VELOCITY CORRESPONDING TO
RADIUS RB(M) LN THE TRAILING VORTEX. (VTHETA, R USED IN TEXT)
DO 100 M=2,N2

Fil=H-1

YY=(L/2.0) - (FM*DY)

GO TO (14,15,16) ,NLOAD
GG=(YY/(L/2.0)) **2
GAM=GAMMA* ((1.0-GG) **0.5)

GG To 17
GAM=GAUMA* (1.0~ (YY* (2.0/L)))
GO TO 17

GG= (YY*PL) /(L/2.0)
GAN=0,5%GAMMA* (1.04COS (GG))
CONTINUE

SUM=SUH+ (GAH*DY)

RB (1) =ABS (SUM/GAN)

VCOR (M) =GAM/ (2.0%PI*RB (M) )
CONTLNUE e
CORAD 1S THE RADIUS WITHIN WHICH ALL VORTICITY IS ..
CONTAINED. (RMAX OF TEXT) o " Vo
CORAD=RB (N2)
VR (1)=0.0 } _ . :
DO 400 H=2,N2 g AR P
Fri=Ht-1 , RIEET Gane
RP=FU*DR . E : . e

IF (RP.GT.CORAD) GO TO 700 T,
DO 500 J=2,N2 . :

(-



g

0

acaaa.

500
600
400
700

800

250

1P (RB(J).GT.RP) GO TO KOO
IP (J.EQ.N2) GO TO 600
CONTINUE

VR (H) =VCOR (J)

CONTLNUE

CONTLNUE

DO 80C K=M, N2

PK=K-1

RP=FK*DR

VR (K) =+GAMMA /(2+0%PI%RP)
CONTINUE

DO 250 I=1,N

W (I)=CuPLX (0.0,0.0)
CONTINUE

DO 900 M=2,N2

Fh=t-1

Z2=FM*DELZ

RZ= (2%%2+1[%%2) #%0,5
POS=RZ,/DR

K=IFIX (POS+0.5)

IF (K.LT.2) K=2

IF (K.GT.Ns/2) K=N/2
ETA=ATAN2 (H,2)

VRTVEL IS VERTICAL VELOCITY
" VRTVEL=+VR (K) *COS (ETQ]Q)
IF (K.EQ.N2) VRTVEL=+GAMMA /(2. 0%PI*Z)

TALL1, AND TAIL2 ARE THE POSITIVE AND Nzuarva WTAILS" OP THE
UPWASH PROFILE TIUAT APPROACH ZERO AS Z APPROACHES INPINITY.
ARZ USED IN THE "ALIASING" STEP (DESCRIBED IN REF.
FOR SUBSEQUENT COMPUTATION OF PAS

TAIL1=0.0

TAIL2=0.0

DO 150 I=1,41
FJ=I-21
IP (FJ.EQ.0) GO TO 150
Z1= (FJ*VRTSEP) +2

NECESSARY
T FOURIER TRANSFORMS

-SS-




150

900

22= (PJ*VRTSEP) -2 ; ‘
TAIL1=TAIL1+GAMMA/ (2.0%PI*21)
TAIL2=TAIL2+GAMHA/ (2. 0*PI*Z2)
CONTINUE
W (M)=CHMPLX (-VRIVEL,0.0) +CMPLX (-TAIL1,0.0) :
W(N-M+2)=CMPLX (+VRTVEL,0.0) +CMPLX (-=TAIL2,0.0)
CONTINUE
RETURN
END

- 95 =
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Cc
c
(o
c
Cc
c
127
i
e
L
T
s
=
200

SUBROUTINE
SUBROUTINE
EVALUATING
AMPLITUDE,
SBAR. LIFT

WHERE TP=T-

VALUZS ARE

LIPT

LIFT COMPUTES THE uwsrnAbv LIFT oh THE BLADE BY
THE INVERSE POURIER TEANSPFORHM OP 10, THE COMPLEX LIPT
LO IS EXPRESSED AS A FUNCTION OF AERODYNAMIC FREQUENCY
IS EXPRFESSED AS A FUNCTION OF RETARDED TIME TP,

X/UC. UC IS THE PHASE VELOCITY OF THE LIPT
PATTERN, UC=U/TAN(LAMBDA)

RETURNED IN COMPLEX ARRAY C.

COMPLEX*8 C(2048) ,W (2048),CL,T,W0,L0,P,V
COMPLEX#8 CHMPLX,CEXP

REAL L,LAMBDA,MACH,VTHET (1024),VR (1024)

O,

COMMON K,C,VR,R, THETA,PSI,LAMBDA,OMEGA,GAMMA,GAMMAO,NACH,RHO,S0,
BO,U,H,PI,UFLO,
COSLAM, TANLAM,COTHET, COSPSI,
ps,DSBAR, DT, DTP,DELZ, DR,
N,N2,N4

DO 177 #=1,N
C (M) =CMPLX (0.0,0.0)

CONTINUE

A=2.0%PI*RHO* (U**2) B0
DTP=(2.0%PI)/(FLOAT(N) *DSBAR)
TPO=DTP*FLOAT (N) /2.

DO 100 M=2,N2

Fti=H-1

‘DO 200 J=1,2

1F (J.EQ.2)

Fii=~FM

SBAR=FM*DSHAR Lo R S

CL=T (SBAR/COSLAMN, LAHBDA)

IF (J.EQ.1)
IF (J.LEQ.2)
LO=A*CL*W0

LO=LO*CEXP (CHPLY (0.0, SBAR*TPO))‘ S e
IF (CABS(LO).LT.UFLO) GO TO 500

IF (J.EQ.1)
IF (J.£Q.2)
CONTINUE

WO=H (M) Cov e
WO= w(n-u+2)

C (M) =LO
C (N- u+2) L0,

-LS-
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. 100 CONTINUE -
i c FOURT IS A FAST POURIEn TRANSPORM SUBROUTINE
b 500 CALL FOURT(C,N,+1,-1,+1,WORK)
; DO 300 H=1,N
* C (M) =DSBAR*C (M)
300 CONTINUE

RETURN

END

[

-85-
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SUBROUTINE SOUND -
SUBROUTINE SOUND COMPUTES THE FARF:ELD PRBSSURB SiGNAL BY
EVALUATING THE INVERSE FOURIER TRANSFORM OF P, THE FREQUENCY
SPECTRUY OF THE FARFIELD SIGNAL. P IS EXPRESSED AS A FUNCTION OF
OBSERVED FREQUENCY 5. THE FARFIELD PRESSURE 1S EXPRESSED AS A
FUNCIION OF TIME,T. OBSERVED FREQUENCY S IS RELATED TO
AERODYNAKIC FREQUENCY SBAR BY S8AR=S* (1-MACH*COS (TUETA) *COS (PS1))
VALUES ARE RETURNED IN COMPLEX ARRAY C
COMPLEX*8 C(2048) ,wW (2048),CL,T,WC,L0,P,V,VANLYT
CUMPLEX*8 CMPLX,CEXP
REAL L,LAMDDA,MACH,VTUET (1024),VR(1024) .
COMMON W,C,VR,R, TUETA,PSL,LAMBDA,OMEGA,GAMMA,GANNAO,MACH,RHO,S0,
80,U,H,PI,UFLO,
COSLAM,TANLAM,COTHET, COSPSI,
DS, DSBAR, DT, DTP,DELZ, DR,
N,N2,N4
DO 177 M=1,N
C(M)=CMPLX (0.0,0.0)
CONTINUE
A=2,0%PI*RHO* (U**2) *B0
B= (MACii*50) /(2.0%P1%R)
X=MAClHi*COTUET*COSPSI
Y=1.0‘X
DS=DSBAR/Y

C.DI=(2. o*puuuouw;*os;

TO=DT*FLOAT (N) /4. ' S
Do uoo ¥=2,N2 T : cil
F“ 1 . ) e ’ ., ’ "‘~.‘.." . ".f.‘v.".. '~.. N
DO 500 J=1,2 o B .
S=FH*Ds " - = '

SBAR=F{*DSBAR .

CL=T (SBAR/COSLAM,LANBDA)

IF (J.EQ.1) HO=W (M) : .
IF (J.EQ.2) WO=W(N-M+2) RN
LO=A*CL*WO } PR

\ . L. LTI

]
o
L =
¢




2 o

500
400

700

600

E=50#5% ( (TANLAM*Y) ~X)

DIREC=SIN(THETA) #SIN(E)/E
P=D*LO%*S*DIREC*CMPLX (0.0, 1.0}
P=P*CEXP (CHPLX (0.0,5%T0))

IF (CABS(P).LT.UFLO) GO TO 700

IF (J.EQ.1) C{(M)=P :

IF (J.EQ.2) C(N-M+2)=P

CONTINUE

CONTINUE

FOURT IS A FAST FOURIER TRANSFORM SUBROUTINE
CALL FOURT(C,N,+1,-1,+1,WORK)
C(M)=DS¥C (M) . . .
CONTINUE

RETURN

END

-09-
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" END

suanourxuz TRNSPM

TRNSPid COMPUTES THE POURIER TRANS?ORH oP vnarxckb vxnocxtv

W IN TERMS OF WAVENUNBER SIGMA, THEN EXPRESSES THE TRANSPORM
AS A FUNCTION OF AERODYNAMIC FREQUENCY SBAR,

WHERE SBAR=SIGMA*COS (LAMBDA)

COMPLEX*8 C (20u48) ,W (2048) ,CL,T,W0,LO,P

COMPLEX*8 CMPLX,CEXP

REAL L,LAMBDA,MACH, VTHET (1024),VR (1024)

BO,U,H,PI,UFLO,
COSLAM, TANLAM, COTHET, COSPSI,
DS,DSBAR,DT,DTP,DELZ, DR,
N,N2,NUu .

FOURT IS A FAST FOURIER TRANSFCHY SUBROUTINE

CALL FOURT (W,N,+1,-1,+1,HORK)

po 100 bL=1,N

W (H) =R () * (DELZ/ (2. 0%PI))

CONTINUE

DSIG=(2.0*PI) / (FLOAT (N)*DELZ)

DSBAR=DSIG*COSLAN

DO 200 M=1,N

W (M) =W (M) /COSLAN

CONTINUE

RETUEKN

(IO B~

COMMON W,C,VR,R,THETA,PSI,LAMBDA,OMEGA ,GANMA,GANMAO ,MACH,RHO,S0,

- 19 -
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PUNCTION FMIN (C,N)

FMIN IS THE MINIMUM REAL VALUE CONTAINED IN A coupzxx ARRAY c oF
LENGTH N
CGMPLEX*8 C(N)
P=90.0

DO 100 M=1,N
Q=REAL (C(M)) /
1P (Q.LT.P) P=Q ,
CONTILNUE )

FPMIN=P

RETURN

END

I

FUNCTION FMAX (C,N) ’
FHAX IS THE MAXIMUM REAL VALUB CONTAINED IN A COMPLEX ARBAY C OF
LENGTH N

CONPLEX*8 C(N)

P=0.0

DO 100 M=1,N

Q=REAL (C(M))

1F (Q.GT.P) P=Q

CONTINUE

FHMAX=P

RETURN

END

-29-
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SUBROULINE DB
DB COMPUTES THE YNTENSITY OF THZ ACOUbTIC SIGNAL IN DECIBELS

COMPLEX*8 C(2048),W(2048),CL,T,40,L0

COMPLEX*8 CMPLX,CEXP
REAL L,LA#RDA,MACH,VTHET (1024),VR (1024)
COMMON W,C,VR,R, THETA,PS1,LAUDBDA,ONEGA GAHHA,GAHHAO,HACU RHO, SO,

BO u,n PI,UFLO,
COSLAM,TANLAM,COTHET,COSPSI,
DS,DSBAR,DT,DTP,DELZ, DR,
N,N2,Nu

DELP=F4AX (C,N) -FMIN (C,N)

P=(DLELP/2.0)*47,.88

PREF=0.00002 '

DBL=20.0%ALOG10 (P/PHEF)

WRITE (6,99) H,DBL

FORMAT (F10.2,F10.2)

RETURN

END

[ I~ -~

B
e 'm -
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COMPLEX PUNCTION T(SIGNA, Lnunbk)
T IS THE LIPT TRANSFER FUNCTION GIVEN BY PILOTAS THRORY
SIGMA 1S A DIMENSIONLESS WAVE NUMBER, SIGMA=SBAR/COS (LAMBDA)
REAL LAMBDA
COMPLEX*8 E
COMPLEX*8 CMPLX,CEXP
SINLAH=SIN (LAMBDA)
COSLAM=COS (LAMBDA)
PI=3.1415926
SIGABS=ADBS (SIGHMA)
A=1.0+(0.5%¥SINLAM)
B PI#((PI/Z 0) ~LAHMBDA) *A
0+ ({2.0%PI4*SIGABS) *A)
PUI=COSLA1'I- (B/C) ’
D=1.0+ (COSLAM**2) + (PI*SIGABS*SINLAN)
F=1.0+ (PI*SIGABS#*D)
G=F*%*0.5
E=CEXP(CUiPLX(0.0,-SIGMA*PHI))
T=E/CMPLX (G,0.0)
RETURN
END

-bg-
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XXX important interactions -
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Figure 2. Blade/Vortex Interaction for Singl

e and Tandem Rotors
(after ref. 3)
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-Figure 3. Geometry of Blade/Vortex Interaction (after ref. 3)
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p(r,6,¥)
observer

Figure 4. Geometry of Acoustic Model




Figure 5. Maximum amplitude of the directivity factor as a
function of 8 for kso>>] 5> 2010gD( e’wcrit) for M=.53

, ‘/l %\\.
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--Figure 6. Geometry applied to the Betz vortex rollup model.

. Maximum loading is assumed at 75% span, so that
vorticity shed from the outboard 25% span rolls up
into the trailing vortex. ’
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‘ J‘igure 28a. Compamson cf farfield acoustic s1gnatures for ogee(ﬁg )

-and square-tipped rotor blades. Tests were conducted with

a Hughes model UH-1H helicopter in level flight at a i
-mominal 61 meter altitude. Microphone is located at ground'~
~Jevel in line with the flight path. (ref 8)

Figure 28b. Sub-wing Tip (ref. 2)
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