6,180 research outputs found
Recommended from our members
Dielectronic Recombination Calculations for Fe15+
Dielectronic recombination (DR) of Na-like Fe15+ forming Mg-like Fe14+ via excitation of a 2l core electron has been investigated. We find that configuration interaction (CI) between DR resonances with different captured electron principal quantum numbers n can lead to a significant reduction in resonance strengths for n ≥ 5. Including this form of CI accounts for most of the discrepancy between previous theoretical and experimental results. Here we briefly present our results and discuss their implications for the modeling of cosmic plasmas
Recommended from our members
Fe15+ dielectronic recombination and the effects of configuration interaction between resonances with different captured electron principal quantum numbers
Dielectronic recombination (DR) of Na-like Fe15+ forming Mg-like Fe14+ via excitation of a 2l core electron has been investigated. We find that configuration interaction (CI) between DR resonances with different captured electron principal quantum numbers n can lead to a significant reduction in resonance strengths for n≥5. Previous theoretical work for this system has not considered this form of CI. Including it accounts for most of the discrepancy between previous theoretical and experimental results
Recommended from our members
Theoretical electron-impact-ionization cross section for Fe11+ forming Fe12+
We have calculated cross sections for electron impact ionization (EII) of P-like Fe11+ forming Si-like Fe12+. We have used the flexible atomic code (FAC) and a distorted-wave (DW) approximation. Particular attention has been paid to the ionization through the 3l→nl′ and 2l→nl′ excitation autoionization (EA) channels. We compare our results to previously published FAC DW results and recent experimental results. We find that the previous discrepancy between theory and experiment at the EII threshold can be accounted for by the 3l→nl′ EA channels which were not included in the earlier calculations. At higher energies the discrepancy previously seen between theory and experiment for the magnitude of the 2l→nl′ (n≥4) EA remains, though the difference has been reduced by our newer results. The resulting Maxwellian rate coefficient derived from our calculations lies within 11% of the experimentally derived rate coefficient in the temperature range where Fe11+ forms in collisional ionization equilibrium
Lattice Expansion in Seamless Bi layer Graphene Constrictions at High Bias
Our understanding of sp2 carbon nanostructures is still emerging and is
important for the development of high performance all carbon devices. For
example, in terms of the structural behavior of graphene or bi-layer graphene
at high bias, little to nothing is known. To this end we investigated bi-layer
graphene constrictions with closed edges (seamless) at high bias using in situ
atomic resolution transmission electron microscopy. We directly observe a
highly localized anomalously large lattice expansion inside the constriction.
Both the current density and lattice expansion increase as the bi-layer
graphene constriction narrows. As the constriction width decreases below 10 nm,
shortly before failure, the current density rises to 4 \cdot 109 A cm-2 and the
constriction exhibits a lattice expansion with a uniaxial component showing an
expansion approaching 5 % and an isotropic component showing an expansion
exceeding 1 %. The origin of the lattice expansion is hard to fully ascribe to
thermal expansion. Impact ionization is a process in which charge carriers
transfer from bonding states to antibonding states thus weakening bonds. The
altered character of C-C bonds by impact ionization could explain the
anomalously large lattice expansion we observe in seamless bi-layer graphene
constrictions. Moreover, impact ionization might also contribute to the
observed anisotropy in the lattice expansion, although strain is probably the
predominant factor.Comment: to appear in NanoLetter
The Wolf effect and the Redshift of Quasars
We consider a simple model, based on currently accepted models for active
galactic nuclei, for a quasi-stellar object (QSO or ``quasar'') and examine the
influence that correlation- induced spectral changes (``The Wolf Effect'') may
have upon the redshifts of the optical emission lines.Comment: 13 pages, 3 figures. To be published in J. European Optical Soc. A:
Pure and Applied Optic
Molecular Cloud Chemistry and The Importance of Dielectronic Recombination
Dielectronic recombination (DR) of singly charged ions is a reaction pathway that is commonly neglected in chemical models of molecular clouds. In this study we include state-of-the-art DR data for He+, C+, N+, O+, Na+, and Mg+ in chemical models used to simulate dense molecular clouds, protostars, and diffuse molecular clouds. We also update the radiative recombination (RR) rate coefficients for H+, He+, C+, N+, O+, Na+, and Mg+ to the current state-of-the-art values. The new RR data have little effect on the models. However, the inclusion of DR results in significant differences in gas-grain models of dense, cold molecular clouds for the evolution of a number of surface and gas-phase species. We find differences of a factor of 2 in the abundance for 74 of the 655 species at times of 104-106 yr in this model when we include DR. Of these 74 species, 16 have at least a factor of 10 difference in abundance. We find the largest differences for species formed on the surface of dust grains. These differences are due primarily to the addition of C+ DR, which increases the neutral C abundance, thereby enhancing the accretion of C onto dust. These results may be important for the warm-up phase of molecular clouds when surface species are desorbed into the gas phase. We also note that no reliable state-of-the-art RR or DR data exist for Si+, P+, S+, Cl+, and Fe+. Modern calculations for these ions are needed to better constrain molecular cloud models
Recommended from our members
Dielectronic recombination for boronlike ions
We have calculated the total dielectronic recombination (DR) coefficients for the 2P1/2 and 2P3/2 states in B-like Ti17+, Fe21+, and Mo37+ ions for electron temperatures 0.1<~T<~10000 eV. The calculations are carried out using the multiconfiguration Dirac-Fock method in intermediate coupling with a configuration interaction. We find that accurate Coster-Kronig energies are critical for a successful determination of low-temperature DR coefficients. We also find that the DR involving fine-structure excitations can be as important as the 2s-2p excitation channels in the low-temperature regime for some ions
Recommended from our members
A simple double-focusing electrostatic ion beam deflector
We have developed an electrostatic, double-focusing 90° deflector for fast ion beams consisting of concentric cylindrical plates of differing heights. In contrast to standard cylindrical deflectors, our design allows for focusing of an incoming parallel beam not only in the plane of deflection but also in the orthogonal direction. The optical properties of our design resemble those of a spherical capacitor deflector while it is much easier and more cost effective to manufacture
Recommended from our members
Absolute energy-resolved measurements of the H-+H→H2+e- associative detachment reaction using a merged-beam apparatus
Using a merged-beam configuration, we have performed absolute measurements for the associative detachment reaction H-+H→H2+e-. Our energy-resolved measurements for this process remove a long-standing discrepancy between theory and experiment for this fundamental reaction. In particular, we find excellent agreement with theoretical results which previously seemed to be ruled out by earlier experiments performed using a flowing afterglow technique
Recommended from our members
Low-energy charge transfer for collisions of Si3+ with atomic hydrogen
Cross sections of charge transfer for Si3+ ions with atomic hydrogen at collision energies of ≈40–2500 eV/u were carried out using a merged-beam technique at the Multicharged Ion Research Facility at Oak Ridge National Laboratory. The data span an energy range in which both molecular orbital close coupling (MOCC) and classical trajectory Monte Carlo (CTMC) calculations are available. The influence of quantum mechanical effects of the ionic core as predicted by MOCC is clearly seen in our results. However, discrepancies between our experiment and MOCC results toward higher collision energies are observed. At energies above 1000 eV/u good agreement is found with CTMC results
- …
