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Absolute energy-resolved measurements of the H− + H → H2 + e− associative
detachment reaction using a merged-beam apparatus
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Using a merged-beam configuration, we have performed absolute measurements for the associative detachment
reaction H− + H → H2 + e−. Our energy-resolved measurements for this process remove a long-standing
discrepancy between theory and experiment for this fundamental reaction. In particular, we find excellent
agreement with theoretical results which previously seemed to be ruled out by earlier experiments performed
using a flowing afterglow technique.
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I. INTRODUCTION

Anion-neutral reactions are important for a wide range of
disciplines such as physics, chemistry, astrophysics, ion source
technology, plasma processing, and planetary atmospheres.
This has been briefly reviewed in [1]. The most fundamental
of all anion-neutral reactions is the associative detachment
(AD) process

H− + H → H2
− → H2 + e−. (1)

Given the simplicity of this reaction, one would naively
expect it to be well understood. Surprisingly, this is not the
case. Despite over 40 years of study, experiment and theory
have failed to converge in either the magnitude or energy
dependence for this reaction.

Early flowing afterglow work quoted a factor of 2 uncer-
tainty [2,3]. A more recent flowing afterglow measurement
reports error bars of 30% [4]. All three experiments were
performed at 300 K. To within their respective error bars, these
measurements show reasonable agreement with the Langevin
rate coefficient as well as with the theoretical results of [5], [6],
and [7]. But the measurements are all discrepant, at greater than
a 1σ level, with the theoretical results of [8] and [9,10].

This comparison would tend to make one question the
calculations of [8] and [9,10]. However, the situation is not
that simple. The three most recent calculations are those
of [7], [8], and [9,10]. All of these calculations used the same
potential for the short-lived, intermediate H2

− complex. So
it is surprising that the theoretical results from these three
groups have not converged. Additionally, the experimental
results of [2], [3], and [4] provide no information on the
energy or temperature dependence of the reaction. This limits
the ability of these measurements to benchmark theory. In
fact the authors in the recent experimental study of [4] write
“an accurate temperature variable experimental study would
provide a valuable benchmark for theoretical assessments.”

Clearly, an energy-resolved measurement of reaction (1)
using an independent experimental method is needed. To that
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end, we have developed a merged-beam apparatus to perform
energy-resolved studies for reaction (1). This approach is free
of many of the systematic uncertainties to which flowing
afterglows may be prone. A detailed description of the
apparatus can be found in [1]. The implications of our results
for cosmology and first star formation are presented in [10].

Here we describe in detail both the measurement technique
and our experimental results. The rest of this paper is organized
as follows: In Sec. II we briefly review our experimental
approach. Sections III–VII discuss our measurements of the
various experimental parameters required to put the results on
an absolute scale. The data acquisition procedure is described
in Sec. VIII and the error budget is summarized in Sec. IX.
Results are presented in Sec. X and a discussion is given in
Sec. XI. Section XII summarizes our work.

II. MEASUREMENT TECHNIQUE

A. Apparatus configuration

Beginning with a negatively biased duoplasmatron anion
source, we extract a beam of negative particles and select
the H− ions using a Wien filter. The beam energy is EH− =
−e(Us + Uf/2) where e is the unit charge, Us = −10 kV
is the nominal source voltage, and Uf is a small correction
voltage defined below. Using a series of standard ion optical
elements, this H− beam is shaped and steered for optimum
transmission [1]. A 90◦ deflection of the beam between the first
and second legs of the apparatus prevents ultraviolet photons
or neutral atoms and molecules from the source from having a
direct path to the interaction region. Beam profiles are observed
before and after this deflection using rotating wire beam profile
monitors (BPMs), with BPM1 located before the deflector and
BPM2 after.

In the second leg (Fig. 1), the beam is brought into the
photodetachment chamber which houses a floating cell biased
to a potential Uf . Depending on the sign of Uf , the H− is
either accelerated or decelerated upon entering the cell. Once
inside, the H− intersects a 975 nm (1.25 eV) laser beam of 1.4
kW continuous wave (cw) power, at an angle of φ = 2.74◦,
converting a fraction of the H− to atomic H. Given the
photon energy and number density used, photodetachment
can produce only ground state H. Approximately 7.5% of
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FIG. 1. (Color) Overview for the second leg of the apparatus.
Not shown are rectangular magnet coils that are mounted from the
beginning of the photodetachment region to the end of the interaction
region to compensate for the magnetic field of the Earth.

the H− beam is converted into an H beam at an energy
of EH = −e(Us − Uf/2). The resulting merged beams exit
the floating cell, whereupon the H− beam returns to its
initial energy while the H beam energy remains unchanged.
Beam collimation is provided by two circular 5-mm-diameter
apertures separated by ∼280 cm, with one located before
the photodetachment chamber (aperture 1) and the other after
(aperture 2).

The beginning of the beam-beam interaction region is de-
fined by a “chopping” electrode located shortly before aperture
2. By applying a negative voltage to this electrode we can
deflect the H− beam into the vacuum chamber wall and thereby
turn off beam-beam reactions in the interaction region. The H
beam is chopped by switching the laser on and off. Chopping
of both beams out of phase allows us to extract the signal
due to H2 generated in the interaction region from the various
backgrounds (e.g., H2 generated before the interaction region).

Within the interaction region, the relative energy Er

between the beams is given by [11]

Er = µ

(
EH−

mH−
+ EH

mH
− 2

√
EH−EH

mH−mH
cos θ

)
, (2)

where mH− and mH are the masses of H− and H, respectively,
µ = mH−mH/(mH− + mH) is the reduced mass of the colliding
system, and θ is the angle of intersection. Er is controlled
by leaving Us constant and varying Uf . This merged-beam
approach allows us to reach collision energies on the order of a
few meV, limited only by the spread in collision angles between
the two beams and the energy spread of each beam [11]. Addi-
tionally, due to the high velocity of the collision partners, the
angular spread of the reaction products is strongly compressed
in the forward direction, allowing their 4π detection on a small
surface with standard detector technology.

BPMs are used to determine the beam-beam overlap within
the interaction region, which has a length of L = 96.5 ±
1.0 cm. BPM3 is located shortly after the beginning of the

interaction region and BPM4 shortly before the end, which is
defined by an electrostatic quadrupole deflector used to direct
the H− beam into a Faraday cup (the H− dump). Any H2

formed in the interaction region has an energy of essentially
EH2 = EH− + EH = −2eUs = 20 keV [1].

From the exit of the spherical deflector to the end of the
interaction region, compensating magnet coils are mounted in
the horizontal and vertical planes parallel to the direction of the
beams. These allow us to minimize the deflection of the anion
beam by the Earth’s magnetic field, thus minimizing the angle
between the anion and neutral beams, and thereby maximizing
the resolving power of the measurement (i.e., minimizing the
energy spread).

After the quadrupole, both the H beam and any AD-
generated H2 continue on into a helium gas cell at ∼2 × 10−4

Torr. A cleaner electrode immediately before the gas cell
removes any H+ and H2

+ created upstream of the gas cell.
Inside the cell ∼5% of the H2 is ionized by the stripping
collision

H2 + He → H2
+ + [He,e−]. (3)

The final state of the He is unimportant. The resulting ∼20 keV
H2

+ is the signal we use to detect reaction (1). In the gas cell,
stripping of the H beam and dissociative ionization of the H2

can each produce ∼10 keV H+.
After the gas cell, the neutrals and resulting ions enter

a series of two double-focusing, electrostatic cylindrical
deflectors [12]. A hole in the outer plate of the first or lower
cylindrical deflector (LCD) allows neutrals to pass through
and travel into a neutral particle detector. The neutral particle
current is monitored by measuring the secondary negative
particle emission from the target inside the neutral detector.
The LCD is used to deflect H2

+ ions upward through a
90◦ angle. The second or upper cylindrical deflector (UCD)
sends the H2

+ ions through another 90◦ bend so that they
are again flying horizontally, but perpendicular to the original
merged-beam axis.

Electrostatic analyzers discriminate charged particles based
on their kinetic energy. We set the voltages on the LCD and
UCD to transmit the ∼20 keV H2

+ signal ions and direct them
into a channel electron multiplier (CEM) while discriminating
against any ∼10 keV H+ formed in the gas cell. Any H2

+

produced in the electric field of the LCD is generated with a
velocity vector and at a beam energy that does not lie within
the acceptance of the LCD+UCD configuration and is not
detected.

Specific apparatus details relevant to the results presented
here are discussed in more depth in the subsequent sections
of this paper. Additional details of the apparatus can be found
in [1] and [10].

B. Rate coefficient measurement

Experimentally, we measure the cross section σAD for
reaction (1) times the relative velocity vr between the H− and
H beams convolved with the velocity spread of the experiment.
This gives the rate coefficient

〈σADvr〉 = RH2

(∫
V

nH−nHdV

)−1

. (4)
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Here RH2 is the AD-generated H2 rate, nH− and nH are the
respective particle densities of each beam, and the integral is
over the volume V of the overlapping beams in the interaction
region.

We infer RH2 from the signal H2
+ created through the

stripping reaction in the He gas cell giving RH2
+ . Because

we operate at low He target thicknesses (often called the linear
regime), we have

RH2 = RH2
+

σstNHe
(5)

where σst is the single-electron stripping cross section and
NHe is the helium target column density (or target thickness).
The measured stripping cross section for 20 keV H2 on
He is (1.04 ± 0.17) × 10−16 cm2 [13]. The ±16% error in
σst represents the largest contribution to the uncertainty
of our absolute scale. Here and throughout the paper all
uncertainties are given at an estimated 1σ level. An additional
10% uncertainty arises due to the unknown rovibrational
distribution of the AD-generated H2 as we discuss in more
detail in [10]. Our determination of NHe is presented in detail
in Sec. III.

The quantity RH2
+ is given by

RH2
+ = S

TaTgη
(6)

where S is the background-subtracted H2
+ signal rate, the

derivation of which is described in Sec. IV. The measured
transmittance of the combined LCD and UCD arrangement
is Ta = 0.99 ± 0.01; the geometric transmittance of the grid
in front of the CEM is Tg = 0.90, with an assumed 1%
uncertainty; and the CEM detection efficiency is η = 0.98 ±
0.02. These three quantities are discussed in more detail in [1].

Focusing now on the term in the parentheses on the right-
hand side of Eq. (4), we define the flux for a single beam
species i as Ji = nivi where ni is the particle density of the
beam and vi the beam velocity. This gives(∫

nH−nHdV

)−1

=
(

1

vH−vH

∫
JH−JHdV

)−1

. (7)

Here vH− and vH are the velocities of the H− and H beams,
respectively. Next, for a single species beam i traveling along
the z axis, we can make use of the relationship between beam
current and beam flux,

Ii =
∫∫

qiJi(x,y)dxdy, (8)

where qi is the charge per particle. We assume there is no
significant current loss as the beam travels along the z axis in
the interaction region. So we can now write∫

JH−JHdV = IH−

qH−

IH

qH
�, (9)

where IH− is the H− current; IH is the H particle current
(expressed here and throughout the paper in amperes); qH− =
−e; and with our convention here for IH, qH = −e. The
methods for measuring the ion and neutral currents are
discussed in Secs. V and VI, respectively.

The overlap factor � is given by

� =
∫∫∫

JH− (x,y,z)JH(x,y,z)dxdydz∫∫
JH− (x,y)dxdy

∫∫
JH(x,y)dxdy

. (10)

In the absence of attenuation, the two-dimensional integrals of
JH− and JH are conserved (i.e., the particle currents), regardless
of z. We define the overlap at any xy plane along the z axis as

�(z) =
∫∫

JH− (x,y,z)JH(x,y,z)dxdy∫∫
JH− (x,y)dxdy

∫∫
JH(x,y)dxdy

(11)

with

� =
∫

�(z)dz. (12)

Further simplification is possible by averaging �(z):

〈�(z)〉 = 1

L

∫
�(z)dz, (13)

where the integral is over the interaction length. Determination
of �(z) is discussed in detail in Sec. VII.

We can now reexpress 〈σADvr〉 as

〈σADvr〉 = 1

σstNHe

S

TaTgη

e2

IH−IH

vH−vH

L〈�(z)〉 . (14)

The average on the left-hand side is over the energy spread of
the measurement described in Sec. VII.

III. HELIUM GAS CELL COLUMN DENSITY

The gas cell base pressure with the beams on and no He
is ∼1 × 10−6 Torr. As we operate at typical He pressures of
2 × 10−4 Torr, we can ignore the base pressure contribution to
the column density of the gas cell.

The He column density in the gas cell is given by

NHe =
∫

gas cell
nHe(�)d�, (15)

where nHe(�) is the He number density along the beam path
and d� the differential path length. NHe can be accurately
approximated using the relationship

NHe = nHeLst, (16)

where nHe is the He density in the gas cell as determined using
the pressure gauge reading and Lst is the effective stripping
length of the gas cell, essentially taking into account any
variation in nHe along �.

We determine the value of Lst using H− current loss mea-
surements versus gas cell pressure in a separate measurement
where we send the H− beam through the gas cell. For these
H− loss results, the attenuating He column density is given by

N ′
He =

∫
quad

nHe(�)d� +
∫

gas cell
nHe(�)d� +

∫
analyzer

nHe(�)d�.

(17)

The first integral is over the path length in the quadrupole
(quad), the second over the gas cell, and the third in the
analyzer. Comparison with Eq. (15) shows that NHe is given
by the second term on the right-hand side of Eq. (17). As
we detect only H2

+ generated by stripping in the gas cell,
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it is this second term that we need to know in order to put
our AD measurements on an absolute scale. But we begin by
determining N ′

He using the H− current loss method.
The H− beam is attenuated by single-electron detachment

(SED)

H− + He → H + [He,e−] (18)

and double-electron detachment (DED)

H− + He → H+ + [He,e−,e−] (19)

where the final state of the He is unimportant. The total electron
detachment (ED) cross section σED is given by

σED = σSED + σDED, (20)

where σSED = (6.14 ± 0.38) × 10−16 cm2 was measured
by [14] and σDED = (5.46 ± 1.64) × 10−17 cm2 is the recom-
mended cross section of [15].

With our experimental configuration SED creates fast H and
DED fast H+. The H can repopulate the parent H− beam via
single-electron capture (SEC) but the recommended value for
σSEC [15] is a factor of ∼130 smaller than σSED. Similarly,
the H+ can repopulate the H− beam via double-electron
capture (DEC), but the recommended σDEC [15] is a factor of
∼540 times smaller than σDED. Hence we assume that both
of these repopulating mechanisms will have an insignificant
effect on our results here and can be ignored.

For the H− attenuation measurements, the initial H− current
is recorded in the H− dump (I o

H− ). To measure the transmitted
current, we use the UCD as a Faraday cup and record IUCD

H− .
We bias the inner plate with a negative voltage to repel any
emitted secondary negative particles back onto the outer plate.
For no attenuation in the gas cell, excellent agreement was
found between the measured currents in the H− dump and
the transmitted currents in either the neutral cup or the UCD
deflector.

The attenuated current versus gas density is given by

IUCD
H−

I o
H−

= exp(−σEDN ′
He). (21)

Because the pressures in the quad (region 1), the gas cell
(region 2), and the analyzer (region 3) all scale linearly with
the gas cell pressure [1], we can write

N ′
He = n2L

′
st, (22)

where we treat the He number density in the gas cell, n2,
as constant along the cell. L′

st is the measured effective ED
length and incorporates the effects of density gradients as the
H− beam traverses from the quad, through the gas cell, and
into the analyzer before it is measured.

From the ideal gas law, one can readily show that the number
density of a species and the pressure at room temperature
(293 K) are related by

n = 3.29 × 1016p cm−3, (23)

where p is in Torr. Using this to rewrite Eq. (22) in terms of
the gas cell pressure p2, we find

N ′
He = 3.29 × 1016p2L

′
st. (24)

FIG. 2. Ratio of the attenuated H− current to initial current as a
function of the He pressure in the gas cell. The circles are the data
and the straight line shows the best fit.

The measured attenuation data for 10 keV H− versus p2

are shown in Fig. 2. We have fitted these data using Eqs. (21)
and (24). The error of the fit is extremely small (as can be
seen from the figure) and makes an insignificant contribution
to the uncertainty in the derived value for L′

st. Taking into
account the published uncertainties in σSED and σDED yields
L′

st = 88.4+5.8
−5.2 cm with the error in percentage being +7%

and −6%.
At this point we need to create a simple model to convert

our measurement of L′
st into Lst. We do this by making three

simplifying approximations for Eq. (17). First, we assume that
the pressure gradient at the entrance and exit of the gas cell
can be accurately represented as a step function. Second, we
treat the gas pressure in each of the three regions as constant
along the ion beam. Third, we consider the gas pressure in each
section as being accurately given by their respective pressure
gauges.

Taking into account the distances from the entrance of the
quadrupole to the H− dump and to the entrance of the gas cell,
the H− dump effectively measures the H− current at a distance
L1 = 5.0 cm before the gas cell entrance. We denote the He
pressure and density in this region as p1 and n1, respectively.
The length of the gas cell is L2 = 78.7 cm. In the final analyzer
the H− travels a distance L3 = 35.4 cm before striking the
UCD. The gas pressure is p3 and the He density n3.

We can reexpress Eq. (17), giving the attenuating column
density that the H− passes through, as

N ′
He = n1L1 + n2L2 + n3L3, (25)

which we can rewrite as

N ′
He = n2L

′
2, (26)

where

L′
2 =

(
n1

n2
L1 + L2 + n3

n2
L3

)
. (27)

Attenuation data were collected at He pressures up to p2 =
4 × 10−4 Torr. Over this range we measured n1/n2 = 0.145
and n3/n2 = 0.155, giving L′

2 = 84.9 cm. This differs by
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−4% from L′
st, which we take as an estimate for the uncertainty

in our simple model.
Equating Lst/L

′
st = L2/L

′
2, we solve for LSt, giving the

effective gas cell length for stripping of AD-generated H2,

Lst =
(

L2

L′
2

)
L′

st = 0.927L′
st. (28)

Using the fitted value for L′
st and adding the above uncertainties

in quadrature gives Lst = 81.9 ± 5.7 cm with the error in
percentage being ±7%. Finally, NHe is determined using
Eqs. (16) and (23) in combination with the measured value
of p2 and our determination here of Lst.

IV. SIGNAL DETERMINATION

Considerable effort was put into suppression of background
counts due to particles other than H2

+ (including photons).
These efforts are reviewed in detail in [1]. As a result, the
CEM counts are essentially due only to H2 molecules formed
along the second leg of the apparatus and stripped in the gas
cell, with an extremely small dark rate.

The chopping scheme used for data collection is shown
in Fig. 3. Four different rates are measured during data
acquisition: both beams on (R1), H− on and H off (R2), H−
off and H on (R3), and both beams off (R4). Timing details of
the chopping pattern are discussed in [1].

We separate the measured rates into those with the laser
on (R1 − R3) and those with the laser off (R2 − R4). These
differences subtract out the dark rate, which is the same for
all four portions of the chopping pattern. What remains in
the quantity (R1 − R3) is the H2

+ CEM rate arising from H2

generated in the interaction region due to H− interacting with
H produced both by photodetachment and by stripping. This
stripped H can be formed anywhere along the second leg of
the apparatus. The quantity (R2 − R4) is the H2

+ CEM rate
arising from H2 generated in the interaction region due to H−
interacting only with H produced by stripping.

To a first approximation, the difference (R1 − R3) −
(R2 − R4) gives the H2

+ CEM rate due to H2 formation solely
in the interaction region. What this ignores, however, is that as
the laser is chopped, this changes both the H− beam current
and the H created by stripping of the H− beam. As a result, the
H2 background depends on the laser state.

FIG. 3. Schematic of the square wave pattern used for data
acquisition. The pattern indicates when the H− and H beams were on
or off in the interaction region. The H− beam was chopped at 50 Hz
and the H beam at 100 Hz. The time duration was equal for each
quadrant in the chopping pattern.

In order to determine the true H2
+ signal from H2 generated

in the interaction region and subsequently stripped in the gas
cell, we need to properly subtract out background H2 formed
by collisions between the H− beam and H created by stripping
of the H− beam. To this end, it is useful to reexpress Eq. (14) as

Ri = βIH−IH, (29)

where Ri is the measured H2
+ rate for a particular phase of

the chopping cycle (i = 1–4) and

β = 〈σADvr〉σStNHeTaTgη
L〈�(z)〉
e2vH−vH

. (30)

The difference in the laser-off rates (R2 − R4) can now be
written as

R2 − R4 = βI off
H−

(
I u

H + I d
H

)
. (31)

Here I off
H− is the cw H− current in the H− dump measured

with the laser off, I u
H is the cw atomic H particle current

created by stripping of the H− beam upstream (u) of the
photodetachment region, and I d

H is the cw atomic H particle
current created by stripping of the H− beam downstream
(d) of the photodetachment region.

With the laser on, the H− beam is reduced by a factor

f = 1 − I on
H−/I off

H− . (32)

For convenience, we rewrite this as

I on
H− = (1 − f )I off

H− . (33)

The particle current I u
H is independent of the laser state.

However, I d
H varies with the state of the laser. The majority of

I d
H is formed in the higher-pressure region after the end of the

photodetachment chamber (discussed below and also in [1]).
The resulting H beam will have nearly the same properties as
the parent H− beam at aperture 2. Hence we expect that I d

H
will be reduced by the same factor of (1 − f ) when the laser is
on. With the laser on, the photodetached H particle cw current
is given by I PD

H . Combining these results, the difference in the
laser-on rates (R1 − R3) is

R1 − R3 = β(1 − f )I off
H−

{
I PD

H + I u
H + I d

H(1 − f )
}
. (34)

Defining

δ = I d
H

I u
H

, (35)

we can rewrite Eqs. (31) and (34) as

R2 − R4 = βI off
H−I u

H(1 + δ). (36)

and

R1 − R3 = β(1 − f )I off
H−

{
I PD

H + I u
H[1 + δ(1 − f )]

}
. (37)

Solving the first of these equations for I u
H yields

I u
H = R2 − R4

βI off
H− (1 + δ)

, (38)

which we substitute into the second equation to find

R1 − R3 = β(1 − f )I off
H−I PD

H

+ (1 − f )

(
1 + δ(1 − f )

1 + δ

)
(R2 − R4). (39)
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The true AD signal rate is given by the first term on the right-
hand side of Eq. (39):

S = β(1 − f )I off
H−I PD

H , (40)

where the (1 − f ) takes into account that I off
H− is the cw H−

current with the laser off but the signal comes from when the
laser is on. Rearranging Eq. (39) and using Eq. (40) we find

S = R1 − R3 − (1 − f )

(
1 + δ(1 − f )

1 + δ

)
(R2 − R4). (41)

We have determined f by measuring I off
H− and I on

H− in the
H− dump under simulated data acquisition conditions. We
find f = 0.074 ± 0.015 where the uncertainty is the measured
scatter in f at a 1σ level. This error results in only a ±5%
uncertainty in S for our results.

The ratio δ is determined by the neutral currents I u
H and I d

H
which are functions of the column density and the composition
of the stripping gas in their respective portions of the second
leg of the setup. Differential pumping at the entrance and exit
of the photodetachment chamber combined with the influx of
helium from the gas cell into the vacuum system upstream of
the chopper results in essentially three nearly constant pressure
regions: from the spherical deflector exit to the entrance of the
photodetachment chamber, the chamber itself, and a short third
region from the exit of the chamber to the chopper electrode
which is at the same pressure as the interaction region. The
pressure in each of these regions is roughly an order of
magnitude less than that of the preceding region. As a result of
the enhanced pressure and stripping in this third region, more
neutrals are created through H− stripping downstream of the
photodetachment region than upstream, giving δ > 1.

Using the measured pressure readings in each section,
their respective lengths, VAKLOOP pressure profile simulations
[16,17], and the SED cross sections for H− on He [14]
and H2 [18], we calculate a factor δ = 7.2. Assuming an
unrealistically large factor of 2 uncertainty in δ introduces
a ±1% error in S for our results here.

Given the above uncertainties for f and δ, we find

S = R1 − R3 − (0.866 ± 0.057) (R2 − R4), (42)

which gives a 5% uncertainty in our results. The uncertainty in
S, due to counting statistics in R1, R2, R3, and R4, is discussed
in Sec. X.

There is one background which is subtracted out by beam
chopping but which was not explicitly included in Eqs. (31)
and (34). As the H− beam passes through the interaction region
(IR), SED off the rest gas creates H which can then react with
the parent H− beam and form H2. This occurs in both R1 and R2

and is almost exactly subtracted out correctly by Eq. (42). We
find that adding a term I IR

H to Eqs. (31) and (34) and working
through the algebra increases S by only 1%, an insignificant
effect which we ignore here.

Lastly, signal H2 can be destroyed through collisions with
the ∼3 × 10−5 Torr of He in the interaction region. In the
linear regime, the fraction destroyed is given by nHeσTDL/2
where the total destruction (TD) cross section is σTD ∼ 2 ×
10−16 cm2 [13,19] and the factor of one-half is to account for
the fact that the signal H2 molecules on average travel only
half the length of the interaction region. Using Eq. (23) and

plugging in the relevant numbers, we find that less than 1% of
the signal H2 is destroyed before making it into the gas cell.
This is an insignificant effect which we ignore here.

V. ANION CURRENT

The H− current was measured using a picoammeter that
averages over the chopping cycle, giving 〈I chop

H− 〉. With the
laser off and a 50 Hz chopping frequency, the ratio of the
unchopped to the chopped currents was a = 1.964. Utilizing
an extremely stable fast current amplifier we verified that the
deviation from a factor of 2 is due to the internal amplification
and averaging mechanisms of the picoammeter.

During data collection, the picoammeter averaged over both
the H− and the laser (i.e., H) chopping patterns. Since the same
duration was used for each quadrant of the chopping pattern,
we have 〈

I
chop
H−

〉 = 1

a

(
I off

H−

2
+ I on

H−

2

)
. (43)

The factors of 1/2 account for the anions being on for half the
time the laser was on and off for the other half.

With the laser on, the H− beam is reduced by a factor of
1 − f as discussed in Sec. IV. Using Eqs. (33) and (43), we
find for the cw currents I off

H− and I on
H−

I off
H− =

(
a

1 − f/2

) 〈
I

chop
H−

〉
(44)

and

I on
H− =

(
a(1 − f )

1 − f/2

) 〈
I

chop
H−

〉
. (45)

A second correction factor is due to attenuation of the
H− beam via ED. The attenuation is insignificant from the
beginning of the second leg of the apparatus to the end of
the photodetachment chamber, a distance of ∼360 cm along
which the operating pressure is <∼5 × 10−7 Torr. Modeling
indicates that ED becomes important from the exit of the
photodetachment chamber to the beginning of the interaction
region (29 cm), through the interaction region (96 cm), and
extends from there through the quadrupole to the mouth of
the H− dump (8 cm). He flowing out of the differentially
pumped gas cell brings the measured operating pressure in
this 132-cm-long region to ∼3 × 10−5 Torr.

We quantified the attenuation by first recording the anion
current in the H− dump with the gas cell at a base pressure
of ∼1 × 10−6 Torr and then at the operating He pressure of
2 × 10−4 Torr. The measured attenuation from the beginning
of the interaction region to the H− dump was 8.6%, indicating
we are in the linear regime. This attenuation reduces to 3.6%
when averaged over the entire length of the interaction region.
Thus the average anion current through the interaction region
was a factor of b = 1/(1 − 0.036) = 1.04 times higher than
that measured in the H− dump. Taking this into account gives

I off
H− =

(
ab

1 − f/2

) 〈
I

chop
H−

〉
(46)

and

I on
H− =

(
ab(1 − f )

1 − f/2

) 〈
I

chop
H−

〉
. (47)
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The uncertainties in a, b, and f result in an estimated 3%
overall error for the anion current measurement.

VI. NEUTRAL CURRENT

Modeling studies indicate that the transmittance of the
laser-generated H beam through aperture 2 differs from that for
the H− beam due to space charge effects in the H− beam. Hence
we do not expect that I PD

H = f I off
H− . The quantity necessary

to analyze our data is the ratio of the laser-produced neutral
current to the laser-off anion current with both quantities
measured after aperture 2. We denote this neutral-to-anion
ratio as

fnta = I PD
H

I off
H−

. (48)

Unfortunately, the neutral detector used for our present
results was not designed for absolute measurements of IH. It
was therefore necessary to build and install a properly designed
neutral cup, to calibrate it, and then to measure fnta under data
collection conditions.

The new neutral detector consists of an electrically isolated
304 stainless target disk with a diameter of 3.18 cm. Mounted
in front of this stands a positively biased tube with an inner
diameter of 2.54 cm. Both are surrounded by a larger-diameter
grounded tube with an annular face plate having an inner
diameter of 2.54 cm. This is sufficient to ensure collection
of the entire H beam, the diameter of which is ∼1.2 cm at
the entrance of the neutral detector. We have measured this
in two ways. In one instance we removed the neutral detector
and installed a Beam Imaging Solutions Model BOS-18 beam
observation system based on a microchannel plate and a
phosphor screen. In the second, we installed a BPM at the
same position.

Fast H atoms that strike the target generate secondary
negative particles which are collected on the inner positive
tube. This yields the measured neutral detector current IND.
The H current is then given by

IH = IND

γ
(49)

with γ the secondary negative particle emission factor.
We calibrated γ by measuring the change in H− current

as a function of the change in the He pressure of the gas
cell. The transmitted H− current was measured on the UCD
simultaneous with the neutral detector current. Both SED
and DED contributed to the attenuation, creating H and H+,
respectively. Conservation of particle current requires that the
change in IUCD

H− versus pressure equals the change in IH+ and
IH, giving

�IUCD
H− = �IH + �IH+ . (50)

The proton current was not measured but can be estimated for
thin column densities from the relationship

IH+ = IH

(
σDED

σSED

)
. (51)

Using this in combination with Eq. (49), we find for a measured
change in the neutral current �IND

γ =
(

1 + σDED

σSED

)
�IND

�IUCD
H−

= (1.09 ± 0.03)
�IND

�IUCD
H−

. (52)

For the last step we have inserted the values for σDED and σSED

given in Sec. III, introducing a 3% uncertainty. We find typical
values for γ of ∼2.

Having calibrated our neutral detector, it was possible
to measure the neutral-to-anion ratio under data collection
conditions. The neutral current under operating conditions
is attenuated by stripping and by SEC off the He in the
system [18]. Almost all of this attenuation is expected to
occur in the gas cell. From the center of the interaction
region, through the gas cell, and to the neutral detector, we
estimate that these reactions reduce the H current by a factor
of 0.91 ± 0.02. Correcting for this and for the attenuation
of the H− beam, we find fnta = 0.0950 ± 0.0095 where the
quoted 1σ error represents the scatter in the measured values.
This implicitly includes the day-to-day variation in the γ

measurement. For the total uncertainty in the neutral current
we add in quadrature this scatter and the 3% uncertainty due
to σDED and σSED, giving a total error of 10%.

Lastly, attenuation of the H beam in the interaction region
is expected to be insignificant. The total cross section [18]
for this is a factor of ∼4.5 times smaller than that for the H−
attenuation in the interaction region. As we are in the linear
regime, we expect a similar reduction for the attenuation of
the H beam. We therefore estimate that the H beam current is
reduced by less than 1%, an insignificant correction which is
ignored here.

VII. BEAM OVERLAP AND COLLISION ENERGIES

The overlap of the two beams is determined from a
combination of profile measurements and geometric modeling.
The overlaps are calculated from the beam profiles recorded
by the two BPMs located in the interaction region. We have
also performed simulations of the beam trajectories starting at
aperture 1 and extending downstream through to the end of
the interaction region. Here we describe each method. We also
used the geometric modeling to determine the center-of-mass
collision energy and energy spread.

A. Overlap determination

Beam profiles are measured in the interaction region using
rotating single-wire BPMs to verify that we are working at
stable beam conditions and to determine �(z). A detailed
discussion of rotating wire BPMs is given in [22]. Only a
brief description is presented here.

Each BPM measures a beam profile in two “pseudoplanes”
separated by 5.4 cm (±2.7 cm from the center of the BPM).
The rotating wire passes the beam horizontally (i.e., along
the x axis) in one pseudoplane and vertically (i.e., along the the
y axis) in the other pseudoplane. The beam velocity defines the
z axis. Given the extremely low divergences of our beams, for
a given BPM, we can treat the profiles in the two pseudoplanes
as if they were measured at the center of the BPM.
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At our beam energies, both charged and neutral beam
particles hitting the rotating wire cause secondary negative
particles to be emitted. The secondary electrons are then picked
up by a shroud lining the inner diameter of the BPM vacuum
pipe and connected to a current amplifier. The secondary
electron current is proportional to the incident particle current.
The measured beam profiles along each axis are in actuality
line densities � given by the integral expressions

�i(x) = εi

∫
Ji(x,y)dy, (53)

�i(y) = εi

∫
Ji(x,y)dx, (54)

where the index i specifies the beam being scanned. The
efficiency factor εi accounts for the secondary electron
emission coefficient of the wire and the efficiency of the
electron collection system.

With the laser and chopper off, we record the H− horizontal
and vertical beam profiles at the two BPMs in the interaction
region. Then, running the laser in cw mode, and using the
chopper electrode to continuously remove the H− beam before
the interaction region, we record the neutral beam profiles at
each BPM. For the neutral beam the preamplifier sensitivity
of each BPM is electronically increased by a factor of 10.

Representative profiles for both beams in the interaction
region are shown in Fig. 4. We also measured the beam
profiles by removing the neutral detector and utilizing the
BOS-18 beam observation system described in Sec. VI. The
recorded profiles were approximately Gaussian in shape. This
indicated that the two-dimensional particle densities JH− (x,y)

FIG. 4. Vertical and horizontal beam profiles of the H− beam
(solid line) and H beam (dashed line) as a function of the BPM wire
position in each beam. The top panel shows the profiles recorded by
BPM3 and the bottom panel by BPM4. The left half of each panel
shows the vertical beam profiles (y) and the right half the horizontal
profiles (x). Both beams have small divergences, resulting in a slightly
broader profile in BPM4 compared to BPM3. However, no significant
demerging is observed. The widths of the profiles shown are ∼5 mm.
The overlaps for the profiles shown are 4.21 cm−2 for BPM3 and
3.02 cm−2 for BPM4.

and JH(x,y) are separable in x and y. The overlap �(z) at the
BPM position z can then be calculated using

�(z) =
∫

�H− (x)�H(x)dx
∫

�H− (y)�H(y)dy∫
�H− (x)dx

∫
�H(x)dx

∫
�H− (y)dy

∫
�H(y)dy

.

(55)

Each BPM outputs an analog voltage U proportional to
the line density �i of the beam at the corresponding wire
position. The output voltage is read into the computer using an
analog-to-digital converter at a sampling rate of 3.75 kHz. Any
dc offset is subtracted and the profile readings are normalized.
We use an arbitrary normalization which ultimately cancels out
as each profile appears in both the numerator and denominator
of the overlap determination. Due to the sampling at discrete
time steps the above integrals become sums over the voltage
samples given by

�(z) =
∑

x UH− (x)UH(x)
∑

y UH− (y)UH(y)∑
x UH− (x)

∑
x UH(x)

∑
y UH− (y)

∑
y UH(y)

. (56)

The BPMs also allowed us to minimize the effects of the
Earth’s magnetic field on the H− beam, minimize the angle
between the beams, and maximize the overlap of the beams.
This was carried out by varying the magnetic field strengths
using the compensation coils while monitoring the overlap of
the two beams. The resulting full angle between the beam axes
in the interaction region was typically ∼0.5 mrad (∼0.03◦).
This is far smaller than the maximum 1.79 mrad (0.1◦) half
angle divergence for each beam set by aperture 1 and 2 and
thus makes an insignificant contribution to the energy spread
of the measurement.

B. Geometric simulations

1. Overlap determination

Apertures 1 and 2 impose strong geometric limitations on
the shape of each beam. As a result we can use ray tracing
to model the overlap of the beams, taking the geometric
constraints into account. The basic idea behind our ray-tracing
model for the propagation of the two beams is shown in Fig. 5.
We begin by discretizing into pixels the plane at aperture 1
as well as an xy plane an arbitrary distance d downstream of
aperture 2. The simulation then starts at each pixel in aperture 1

FIG. 5. Schematic overview of the ray-tracing simulation for
determining the profile of each beam in the interaction region, the
overlap of the two beams, and the relative energy in the center-of-mass
frame. See text for additional details.
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and calculates all trajectories beginning at aperture 1 that make
it through aperture 2 and on to the desired plane. This allows
us to calculate the profile of each transmitted beam. Using
these results we can then determine how the overlap of the two
beams evolves along their respective flight paths by varying d.
Comparison of the overlaps from the profile simulation with
the measured ones at the two BPM positions showed excellent
agreement.

We use these profile simulation results to extrapolate the
measured profiles upstream of BPM3, to interpolate between
the BPM3 and BPM4 results, and to extrapolate downstream
of BPM4. The simulated overlap �(z) is well fitted by a de-
creasing exponential which we normalize using the BPM3 and
BPM4 overlaps and the condition �(∞) = 0. This fit allows
us to determine 〈�(z)〉. Using a less accurate linear function
for �(z) results in an ∼2% increase in the experimental rate
coefficient. The total estimated uncertainty in 〈�(z)〉 of 3%
was derived from a combination of the reproducibility of the
BPM overlap measurements and the agreement between two
independently written geometric simulations.

2. Collision energy determination

We also use the ray-tracing model to determine the mean
collision energy 〈Er〉 and energy spread versus Uf . We begin at
aperture 1 and take all pairs of trajectories emerging from this
aperture. Keeping only those pairs that pass through aperture
2 and then cross in the same pixel in the desired xy plane, we
calculate the collision angle θ .

For each pair of trajectories, we simulate the energy spread
of each beam by assigning each trajectory an energy of
EH− = −e(Us + Uf/2) + δEH− and EH = −e(Us − Uf/2) +
δEH, respectively. The values for δEi are randomly chosen
from a Gaussian distribution centered around zero with a full
width at half maximum of 10 eV. This source energy spread
was inferred by chopping the H− beam and measuring the
time-of-flight distribution for the beam. This spread agrees
with previously published values for the same type of ion
source [23].

From the combined variation in θ and δi , we have derived
the center-of-mass distribution for Er at a given floating cell
voltage Uf . Figure 6 presents the results in energy. The model
probability distribution in velocity is shown in Fig. 7. For
floating cell voltages |Uf| <∼ 10 V, Er is determined largely by
the collision angles. The resulting energy spread is reasonably
well fit by a Maxwell-Boltzmann (i.e., thermal) distribution.
At |Uf | = 1 V the distribution corresponds to a temperature
of 30 K. As |Uf| increases, the effect of the collision angles
becomes less important. For |Uf| >∼ 25 V the energy spread
of the ion source dominates and the distribution becomes
Gaussian.

VIII. DATA ACQUISITION PROCEDURE

Each data run typically consisted of 80–100 iterations
scanning through a series of floating cell voltages. These scans
covered −1 � Uf � −91 V in steps of 5 V for the lower
energies and −81 � Uf � −281 V in steps of 20 V for the
higher energies. Before each run, an intermediate value of Uf

was used while the computer automatically tuned the H− beam.
The aim of using an intermediate voltage was to minimize

FIG. 6. Calculated average collision energy 〈Er〉 (filled circles)
and spread (error bars) for different floating cell voltages |Uf | due to
collision angles and beam energy spread. Apertures of 5 mm were
used for the simulation as were used for the experiment.

beam changes due to imperfect scaling of the beam optics
with Uf .

A LABVIEW program controlled the data acquisition pro-
cedure. After autotuning, beam profiles were recorded for
each value of Uf . At each floating cell voltage, first the anion
profile was measured and then the neutral beam profile. We
also recorded the gas cell pressure reading p2 whenever beam
profiles were taken. For AD data acquisition, all BPMs were
turned off with the scanning wire parked at a position outside
the beams. Data were then collected for typically 20 iterations
after which beam profiles were again recorded. This pattern of
autotuning, profile measurements, data collection, and profile
measurements was repeated until 80–100 iterations through
the selected range for Uf had been performed.

FIG. 7. Collision velocity vr probability distributions from the
geometric simulations described in Sec. VII B. The solid curves from
left to right show the results at floating cell voltages of |Uf | = 1, 10,
20, 50, and 100 V. The 1 V data have been fitted with a Maxwellian
distribution (left dotted curve) and the 100 V data with a Gaussian
distribution (right dotted curve) which is not distinguishable from the
model results.
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TABLE I. Summary of nonstatistical uncertainties going into Eq. (14). Also listed are each relevant symbol, the section where the term
is discussed in detail, and typical values. All uncertainties are quoted at a confidence level which is taken to be equivalent to a 1σ statistical
confidence level. The uncertainties are also treated as random sign errors and added in quadrature.

Source Symbol Section Value Error (%)

Stripping cross section σst II 1.04 × 10−16 cm2 16
Effects of unknown
rovibrational distribution σst II 10
Analyzer transmittance Ta II 0.99 1
Grid transmittance Tg II 0.90 1
CEM detection efficiency η II 0.98 2
Overlap length L II 96.5 cm 1
He gas cell column density NHe III 5.4 × 1014 cm−2 7
Signal S IV 5 s−1 5
Anion current IH− V 650 nA 3
Neutral current IH VI 62 nA 10
Beam overlap 〈�(z)〉 VII 4 cm−2 3
Quadrature sum 24

We acquired AD data using the chopping pattern for each
beam shown in Fig. 3. For a given scan, a 5 s dwell time was
used for each step in Uf . At the end of each step the rates R1

through R4 were recorded as well as the dwell-time-averaged
anion current and laser power.

IX. UNCERTAINTIES

The various systematic errors of our measurement are dis-
cussed in detail in Secs. II–VII. These systematic uncertainties
are quoted at a confidence level believed to be equivalent
to a 1σ statistical confidence level. All are summarized in
Table I. We treat each as a random sign error and add them
all in quadrature. The resulting total estimated systematic
uncertainty in our measurement is 24%.

For each data run, the 1σ statistical error at a given Er is
given by simple counting statistics as σ = ±(R1 + R2 + R3 +
R4)1/2. Data from all the runs were averaged together at each
energy using a 1/σ 2 weighting.

X. RESULTS

A. Experimental rate coefficient

The measured experimental rate coefficient is given by
Eq. (14). Sections II–VIII describe the determination of the
relevant quantities on the right-hand side of this equation.
The resulting AD data are presented as a function of collision
energy 〈Er〉 in Fig. 8. The circles represent the statistically
weighted average of our results and the error bars the 1σ

statistical error as described in Sec. IX. Table II lists our results
as a function of |Uf| and 〈Er〉.

B. Extracted cross section

In order to extract a cross section from our measured
〈σADvr〉, we begin by assuming a functional form for the cross
section given by

σAD(Er) =
{

AE−B
r , Er � Ec,

C + DE−1
r , Er > Ec.

(57)

This reproduces the main features of the theoretical cross
section from [9]; namely, with increasing energy, a decrease
in σAD more slowly than E−1

r below some critical energy Ec

and a decrease as E−1
r for higher energies. Multiplying this by

vr and convolving with the experimental velocity distribution,
we obtained the fit parameters A, B, C, D, and Ec via a χ2

minimization of the difference between the experimental and
model results.

Fit parameters are given in Table III and a comparison to
theory in Fig. 9. The data point at 4.2 meV was left out of the
fit, as it stands out by ∼(2–3)σ from the neighboring data
points. The fitting incorporated the statistical uncertainties
and produced a reduced χ2 = 1.08. The energy limits of
0.003 eV to 1 eV on the extracted cross section derive from the
measured energy range (see Fig. 8 and Table II). We used the
covariance matrix of the fit parameters to estimate the standard

FIG. 8. The experimental rate coefficient 〈σADvr〉 as a function of
the collision energy 〈Er〉 is shown by the circles and the 1σ statistical
uncertainty by the error bars. The solid curve gives the theoretical
cross section of [9,10] times the relative velocity convolved with the
experimental energy spread. The dashed curve shows the Langevin
rate coefficient.
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TABLE II. Floating cell voltage |Uf |, collision energy 〈Er〉,
and experimental rate coefficient 〈σADvr〉. The quoted uncertainty
represents the 1σ statistical confidence level.

|Uf | (V) 〈Er〉 (eV) 〈σADvr〉 (10−9 cm3 s−1)

1 0.003 74 4.30 ± 0.26
6 0.004 17 5.24 ± 0.27
11 0.005 24 4.56 ± 0.28
16 0.006 93 5.01 ± 0.28
21 0.009 25 5.18 ± 0.28
26 0.0122 5.06 ± 0.28
31 0.0157 5.31 ± 0.28
36 0.0199 5.35 ± 0.28
41 0.0247 5.01 ± 0.28
46 0.0302 4.50 ± 0.28
51 0.0362 4.50 ± 0.27
56 0.0429 3.68 ± 0.26
61 0.0502 3.43 ± 0.26
66 0.0582 2.87 ± 0.27
71 0.0667 2.67 ± 0.27
76 0.0759 2.84 ± 0.26
81 0.0857 2.36 ± 0.14
86 0.0962 2.75 ± 0.26
91 0.107 2.32 ± 0.26
101 0.131 1.81 ± 0.17
121 0.187 1.67 ± 0.17
141 0.252 1.44 ± 0.17
161 0.328 1.64 ± 0.17
181 0.413 1.49 ± 0.17
201 0.509 1.39 ± 0.17
221 0.614 1.36 ± 0.17
241 0.730 1.46 ± 0.16
261 0.855 1.29 ± 0.15
281 0.991 1.05 ± 0.15

deviation of the fit function which we then added quadratically
to the systematic experimental uncertainty. The resulting 1σ

confidence interval is ±26%.

C. Maxwellian rate coefficient

Using our extracted σAD, we have multiplied this by vr

and convolved it with a Maxwell-Boltzmann thermal velocity
distribution. The resulting thermal rate coefficient is shown
in Fig. 10 by the solid curve. The results derived from the
present experimental work are plotted between 30 and 3000 K.
This lower limit corresponds to the energy resolution of the
experiment while the upper bound is related to the maximum
relative energy covered by the experiment, which was 1 eV.

TABLE III. Fit parameters for Eq. (57) describing the extracted
experimental cross section of reaction (1).

Parameter Value

A (cm2 eV−1) 6.05 × 10−15

B 0.327
C (cm2) 2.37 × 10−16

D (cm2 eV−1) 3.67 × 10−16

Ec (eV) 0.0158

FIG. 9. Extracted experimental cross section for reaction (1)
(solid curve) and the total experimental uncertainty at an estimated
1σ level (long-dashed curves). Also shown are the theoretical results
from [9,10] (dotted curve) and the Langevin cross section (short-
dashed curve).

Indeed, for 3000 K, 11% of the collisions already occur at
energies above 1 eV. The error limits shown by the long-dashed
curve are those of the extracted cross section.

XI. DISCUSSION

As shown in Fig. 8, we find excellent agreement between
our measured 〈σADvr〉 and the calculations of [9,10]. Not sur-
prisingly, this agreement extends to the extracted experimental
cross section and the theoretical results of [9,10] as seen in
Fig. 9.

FIG. 10. Thermal rate coefficients for reaction (1) compared to
the most recent theoretical results. The solid curve gives the result
derived from the present experimental work and the long-dashed
curves the estimated 1σ total experimental uncertainty. The circles
with the error bars present the 300 K flowing afterglow data of [2], [3],
and [4] shifted for clarity by −25 K, 0 K, and +25 K, respectively.
Also shown are the theoretical results of [7] for their potential V1

(upper dotted-long-dashed curve) and V2 (lower dotted-long-dashed
curve), of [8] (squares), and of [9,10] (dotted curve), as well as the
Langevin rate coefficient (horizontal short-dashed line).
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In Figs. 8 and 9 we also compare our data to the commonly
used Langevin theory. Here, though, we have divided the
classical Langevin results by a factor of 2 under the assumption
that those colliding particles which come in along the H2

−

attractive X2�u potential energy curve (PEC) can undergo AD,
but that those which come in along the repulsive 12�g PEC
cannot. We find that our experimental results are larger than
the Langevin value for collision energies <∼0.5 eV. We attribute
this to the H2

− PEC being more attractive than the simple
polarization case assumed for the Langevin calculations, as
has previously been noted by [9].

Concerning thermal rate coefficients, we limit our com-
parison to only the three most recent theoretical calculations
for reaction (1), which are shown in Fig. 10. Our results
are discrepant with the theory of [7] over nearly the entire
energy range for which the experimentally derived thermal
rate coefficient is valid. The reason for this is not known.
However, we find good agreement with the calculations of [8]
and [9,10].

Previous experimental measurements were performed us-
ing flowing afterglows and yielded thermal rate coefficients.
Figure 10 presents the afterglow results of [2], [3], and [4].
These first two measurements each have a factor of 2 uncer-
tainty. This reduces their utility. So we limit our discussion
to the more recent 300 K results from [4] of (2.0 ± 0.6) ×
10−9 cm3s−1, which are discrepant with our results. A possible
explanation for this discrepancy could be that in [4] the neutral
H density was determined by normalizing to a measurement
by [24] for the AD reaction

H + Cl− → HCl + e−. (58)

However, the measurement of [24] is a factor of ∼1.5
times smaller than the calculations of [25]. Scaling the data
of [4] up by this factor brings them into agreement with our
experimental results and with the calculations of [9,10].

The possibility that the results of [24] may be low by
a factor of 1.5 is potentially an issue of major concern
for astrochemistry. An array of molecular anions have been
recently been discovered in interstellar and circumstellar
environments [26–30]. These anions can undergo AD with
cosmically abundant H, affecting both the molecular abun-
dances and the ionization balance of these astrophysical
environments. As a result, researchers have begun measuring
AD rate coefficients of various molecular anions with H using
flowing afterglows (e.g., [31,32]). However, these researchers
have normalized their results to those of [24] to determine the
neutral H density. In order to reliably set the absolute value of
these normalized AD results, it is clear that a re-measurement
of reaction (58) is called for, using a technique other than the
flowing afterglow method.

XII. SUMMARY

We have performed absolute measurements for the fun-
damental anion-neutral reaction H + H− → H2 + e−. Our
results are obtained as a function of energy and are in excellent
agreement with the calculations of [8] and [9,10] but discrepant
with those of [7]. Our results are also discrepant with the
recent room temperature, flowing afterglow measurements
of [4]. Future experimental plans include extending our
measurements to energies 〈Er〉 above 1 eV and investigating
the isotope effect by measuring D + D− → D2 + e−.
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