36 research outputs found

    Initial B Cell Activation Induces Metabolic Reprogramming and Mitochondrial Remodeling.

    Get PDF
    B lymphocytes provide adaptive immunity by generating antigen-specific antibodies and supporting the activation of T cells. Little is known about how global metabolism supports naive B cell activation to enable an effective immune response. By coupling RNA sequencing (RNA-seq) data with glucose isotopomer tracing, we show that stimulated B cells increase programs for oxidative phosphorylation (OXPHOS), the tricarboxylic acid (TCA) cycle, and nucleotide biosynthesis, but not glycolysis. Isotopomer tracing uncovered increases in TCA cycle intermediates with almost no contribution from glucose. Instead, glucose mainly supported the biosynthesis of ribonucleotides. Glucose restriction did not affect B cell functions, yet the inhibition of OXPHOS or glutamine restriction markedly impaired B cell growth and differentiation. Increased OXPHOS prompted studies of mitochondrial dynamics, which revealed extensive mitochondria remodeling during activation. Our results show how B cell metabolism adapts with stimulation and reveals unexpected details for carbon utilization and mitochondrial dynamics at the start of a humoral immune response

    Coaching Models of School-Based Prevention and Promotion Programmes: A Qualitative Exploration of UK Teachers' Perceptions

    Get PDF
    There has been increased interest in recent years regarding the utility of imported universal prevention and promotion (P&P) programmes in UK schools, many of which have a coaching model attached. However, there have been relatively few studies exploring the cultural transferability and social validity of these models, even though evidence suggests that these factors are important to the successful implementation of the programmes, and thus the achievement of the intended outcomes. The aim of the current study was to explore the coaching practices that teachers report experiencing, and to further understanding of the perceived benefts of these coaching practices to teachers. The sample consisted of 33 teachers implementing one of two universal, school-based P&P programmes, Good Behavior Game and Promoting Alternative Thinking Strategies as part of large-scale, randomised controlled trials. Qualitative, semi-structured interviews were conducted, and data were analysed thematically utilising a hybrid approach. Teachers typically reported engaging in six distinct practices with their coaches. While the majority of these practices were in line with coaching literature, there were some discrepancies between intended coaching practices and teachers’ reports. The coaching practices were generally perceived to be acceptable to teachers. Two unanticipated practices, validation and motivation, appeared to be of particular value to teachers, although these are not currently a prominent feature in existing coaching models. The fndings provide implications for improving the development of socially valid coaching models for UK schools

    Toolbox for Non-Intrusive Structural and Functional Analysis of Recombinant VLP Based Vaccines: A Case Study with Hepatitis B Vaccine

    Get PDF
    Background: Fundamental to vaccine development, manufacturing consistency, and product stability is an understanding of the vaccine structure-activity relationship. With the virus-like particle (VLP) approach for recombinant vaccines gaining popularity, there is growing demand for tools that define their key characteristics. We assessed a suite of non-intrusive VLP epitope structure and function characterization tools by application to the Hepatitis B surface antigen (rHBsAg) VLP-based vaccine. Methodology: The epitope-specific immune reactivity of rHBsAg epitopes to a given monoclonal antibody was monitored by surface plasmon resonance (SPR) and quantitatively analyzed on rHBsAg VLPs in-solution or bound to adjuvant with a competitive enzyme-linked immunosorbent assay (ELISA). The structure of recombinant rHBsAg particles was examined by cryo transmission electron microscopy (cryoTEM) and in-solution atomic force microscopy (AFM). Principal Findings: SPR and competitive ELISA determined relative antigenicity in solution, in real time, with rapid turnaround, and without the need of dissolving the particulate aluminum based adjuvant. These methods demonstrated the nature of the clinically relevant epitopes of HBsAg as being responsive to heat and/or redox treatment. In-solution AFM and cryoTEM determined vaccine particle size distribution, shape, and morphology. Redox-treated rHBsAg enabled 3D reconstruction from CryoTEM images – confirming the previously proposed octahedral structure and the established lipidto-protei

    Individual islet respirometry reveals functional diversity within the islet population of mice and human donors

    No full text
    Objective: Islets from the same pancreas show remarkable variability in glucose sensitivity. While mitochondrial respiration is essential for glucose-stimulated insulin secretion, little is known regarding heterogeneity in mitochondrial function at the individual islet level. This is due in part to a lack of high-throughput and non-invasive methods for detecting single islet function. Methods: We have developed a novel non-invasive, high-throughput methodology capable of assessing mitochondrial respiration in large-sized individual islets using the XF96 analyzer (Agilent Technologies). Results: By increasing measurement sensitivity, we have reduced the minimal size of mouse and human islets needed to assess mitochondrial respiration to single large islets of >35,000 μm2 area (∼210 μm diameter). In addition, we have measured heterogeneous glucose-stimulated mitochondrial respiration among individual human and mouse islets from the same pancreas, allowing population analyses of islet mitochondrial function for the first time. Conclusions: We have developed a novel methodology capable of analyzing mitochondrial function in large-sized individual islets. By highlighting islet functional heterogeneity, we hope this methodology can significantly advance islet research. Keywords: Islets, Mitochondria, Respirometry, Glucos

    Parkin regulates adiposity by coordinating mitophagy with mitochondrial biogenesis in white adipocytes.

    No full text
    Parkin, an E3 ubiquitin ligase, plays an essential role in mitochondrial quality control. However, the mechanisms by which Parkin connects mitochondrial homeostasis with cellular metabolism in adipose tissue remain unclear. Here, we demonstrate that Park2 gene (encodes Parkin) deletion specifically from adipose tissue protects mice against high-fat diet and aging-induced obesity. Despite a mild reduction in mitophagy, mitochondrial DNA content and mitochondrial function are increased in Park2 deficient white adipocytes. Moreover, Park2 gene deletion elevates mitochondrial biogenesis by increasing Pgc1α protein stability through mitochondrial superoxide-activated NAD(P)H quinone dehydrogenase 1 (Nqo1). Both in vitro and in vivo studies show that Nqo1 overexpression elevates Pgc1α protein level and mitochondrial DNA content and enhances mitochondrial activity in mouse and human adipocytes. Taken together, our findings indicate that Parkin regulates mitochondrial homeostasis by balancing mitophagy and Pgc1α-mediated mitochondrial biogenesis in white adipocytes, suggesting a potential therapeutic target in adipocytes to combat obesity and obesity-associated disorders
    corecore