239 research outputs found
Erased: The impact of FOSTA-SESTA and the removal of Backpage on sex workers
This short article presents in brief the findings of a community-based, sex worker-led survey that asked sex workers about their experiences since the closure of Backpage and adoption of FOSTA. It shows that the financial situation of the vast majority of research participants has deteriorated, as has their ability to access community and screen clients. It concludes that FOSTA is just the latest example of the US government using anti-trafficking policy and restrictions on technology to police already marginalised people
Pax6 interactions with chromatin and identification of its novel direct target genes in lens and forebrain.
Pax6 encodes a specific DNA-binding transcription factor that regulates the development of multiple organs, including the eye, brain and pancreas. Previous studies have shown that Pax6 regulates the entire process of ocular lens development. In the developing forebrain, Pax6 is expressed in ventricular zone precursor cells and in specific populations of neurons; absence of Pax6 results in disrupted cell proliferation and cell fate specification in telencephalon. In the pancreas, Pax6 is essential for the differentiation of α-, ÎČ- and ÎŽ-islet cells. To elucidate molecular roles of Pax6, chromatin immunoprecipitation experiments combined with high-density oligonucleotide array hybridizations (ChIP-chip) were performed using three distinct sources of chromatin (lens, forebrain and ÎČ-cells). ChIP-chip studies, performed as biological triplicates, identified a total of 5,260 promoters occupied by Pax6. 1,001 (133) of these promoter regions were shared between at least two (three) distinct chromatin sources, respectively. In lens chromatin, 2,335 promoters were bound by Pax6. RNA expression profiling from Pax6âș/â» lenses combined with in vivo Pax6-binding data yielded 76 putative Pax6-direct targets, including the Gaa, Isl1, Kif1b, Mtmr2, Pcsk1n, and Snca genes. RNA and ChIP data were validated for all these genes. In lens cells, reporter assays established Kib1b and Snca as Pax6 activated and repressed genes, respectively. In situ hybridization revealed reduced expression of these genes in E14 cerebral cortex. Moreover, we examined differentially expressed transcripts between E9.5 wild type and Pax6â»/â» lens placodes that suggested Efnb2, Fat4, Has2, Nav1, and Trpm3 as novel Pax6-direct targets. Collectively, the present studies, through the identification of Pax6-direct target genes, provide novel insights into the molecular mechanisms of Pax6 gene control during mouse embryonic development. In addition, the present data demonstrate that Pax6 interacts preferentially with promoter regions in a tissue-specific fashion. Nevertheless, nearly 20% of the regions identified are accessible to Pax6 in multiple tissues
Recommended from our members
Viral Diversity Threshold for Adaptive Immunity in Prokaryotes
Bacteria and archaea face continual onslaughts of rapidly diversifying viruses and plasmids. Many prokaryotes maintain adaptive immune systems known as clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated genes (Cas). CRISPR-Cas systems are genomic sensors that serially acquire viral and plasmid DNA fragments (spacers) that are utilized to target and cleave matching viral and plasmid DNA in subsequent genomic invasions, offering critical immunological memory. Only 50% of sequenced bacteria possess CRISPR-Cas immunity, in contrast to over 90% of sequenced archaea. To probe why half of bacteria lack CRISPR-Cas immunity, we combined comparative genomics and mathematical modeling. Analysis of hundreds of diverse prokaryotic genomes shows that CRISPR-Cas systems are substantially more prevalent in thermophiles than in mesophiles. With sequenced bacteria disproportionately mesophilic and sequenced archaea mostly thermophilic, the presence of CRISPR-Cas appears to depend more on environmental temperature than on bacterial-archaeal taxonomy. Mutation rates are typically severalfold higher in mesophilic prokaryotes than in thermophilic prokaryotes. To quantitatively test whether accelerated viral mutation leads microbes to lose CRISPR-Cas systems, we developed a stochastic model of virus-CRISPR coevolution. The model competes CRISPR-Cas-positive (CRISPR-Cas+) prokaryotes against CRISPR-Cas-negative (CRISPR-Casâ) prokaryotes, continually weighing the antiviral benefits conferred by CRISPR-Cas immunity against its fitness costs. Tracking this cost-benefit analysis across parameter space reveals viral mutation rate thresholds beyond which CRISPR-Cas cannot provide sufficient immunity and is purged from host populations. These results offer a simple, testable viral diversity hypothesis to explain why mesophilic bacteria disproportionately lack CRISPR-Cas immunity. More generally, fundamental limits on the adaptability of biological sensors (Lamarckian evolution) are predicted
Quantitative analysis of numerical estimates for the permeability of porous media from lattice-Boltzmann simulations
During the last decade, lattice-Boltzmann (LB) simulations have been improved
to become an efficient tool for determining the permeability of porous media
samples. However, well known improvements of the original algorithm are often
not implemented. These include for example multirelaxation time schemes or
improved boundary conditions, as well as different possibilities to impose a
pressure gradient. This paper shows that a significant difference of the
calculated permeabilities can be found unless one uses a carefully selected
setup. We present a detailed discussion of possible simulation setups and
quantitative studies of the influence of simulation parameters. We illustrate
our results by applying the algorithm to a Fontainebleau sandstone and by
comparing our benchmark studies to other numerical permeability measurements in
the literature.Comment: 14 pages, 11 figure
Quantification of the performance of chaotic micromixers on the basis of finite time Lyapunov exponents
Chaotic micromixers such as the staggered herringbone mixer developed by
Stroock et al. allow efficient mixing of fluids even at low Reynolds number by
repeated stretching and folding of the fluid interfaces. The ability of the
fluid to mix well depends on the rate at which "chaotic advection" occurs in
the mixer. An optimization of mixer geometries is a non trivial task which is
often performed by time consuming and expensive trial and error experiments. In
this paper an algorithm is presented that applies the concept of finite-time
Lyapunov exponents to obtain a quantitative measure of the chaotic advection of
the flow and hence the performance of micromixers. By performing lattice
Boltzmann simulations of the flow inside a mixer geometry, introducing massless
and non-interacting tracer particles and following their trajectories the
finite time Lyapunov exponents can be calculated. The applicability of the
method is demonstrated by a comparison of the improved geometrical structure of
the staggered herringbone mixer with available literature data.Comment: 9 pages, 8 figure
Prevalence of osteomuscular pain with different levels of muscle strength in elderly women
O declĂnio de massa muscular estĂĄ associado a redução da força e perda da funcionalidade na população idosa, sendo as queixas de dores articulares e musculares outro fator que pode prejudicar a qualidade de vida dos mesmos. Objetivo: comparar a prevalĂȘncia de dores osteomusculares com distintos nĂveis de força muscular em mulheres idosas. MĂ©todos: A amostra foi composta por 43 mulheres com idade mĂ©dia de 65,33±4,54 anos. Para a avaliação da força mĂĄxima foi aplicado o teste de uma repetição mĂĄxima e para a mensuração da presença de dores foi usado o questionĂĄrio NĂłrdico de Dor. Resultados: A prevalĂȘncia de dor nos Ășltimos 12 meses acometeu um maior percentual de sujeitos nas regiĂ”es da parte inferior das costas (69,8%) e dos ombros (62,8%), nĂŁo sendo encontradas associaçÔes entre os nĂveis de força e a presença de dores osteomusculares. ConclusĂŁo: NĂŁo foi possĂvel associar o maior nĂvel de força a uma diminuição nos relatos de dores.Decreased muscle mass is associated with reduced strength and loss of function in the elderly population, and complaints of joint and muscle pain are another factor that can impair their quality of life. Objective: To compare the prevalence of musculoskeletal pain with different levels of muscular strength in elderly women. Methods: The sample consisted of 43 women with a mean age of 65.33±4.54 years. A maximum repetition test was used to evaluate the maximum strength and the Nordic Pain questionnaire was used to measure the presence of pain. Results: The prevalence of pain in the last 12 months affected a greater percentage of subjects in the regions of the lowerback (69.8%) and shoulders (62.8%), and no associations were found between strength levels and presence of musculo skeletal pain. Conclusion: Although weunderstand that streng this associated with numerous benefits for the elderly population, we can not associate the highest level of strength with a decrease in pain report
Structural brain preservation: a potential bridge to future medical technologies
When faced with the prospect of death, some people would prefer a form of long-term preservation that may allow them to be restored to healthy life in the future, if technology ever develops to the point that this is feasible and humane. Some believe that we may have the capacity to perform this type of experimental preservation todayâalthough it has never been provenâusing contemporary methods to preserve the structure of the brain. The idea is that the morphomolecular organization of the brain encodes the information required for psychological properties such as personality and long-term memories. If these structures in the brain can be maintained intact over time, this could theoretically provide a bridge to access restorative technologies in the future. To consider this hypothesis, we first describe possible metrics that can be used to assess structural brain preservation quality. We next explore several possible methods to preserve structural information in the brain, including the traditional cryonics method of cryopreservation, as well as aldehyde-stabilized cryopreservation and fluid preservation. We focus in-depth on fluid preservation, which relies on aldehyde fixation to induce chemical gel formation in a wide set of biomolecules and appears to be a cost-effective method. We describe two theoretical recovery technologies, alongside several of the ethical and legal complexities of brain preservation, all of which will require a prudent approach. We believe contemporary structural brain preservation methods have a non-negligible chance of allowing successful restoration in the future and that this deserves serious research efforts by the scientific community
Exoplanet Diversity in the Era of Space-based Direct Imaging Missions
This whitepaper discusses the diversity of exoplanets that could be detected
by future observations, so that comparative exoplanetology can be performed in
the upcoming era of large space-based flagship missions. The primary focus will
be on characterizing Earth-like worlds around Sun-like stars. However, we will
also be able to characterize companion planets in the system simultaneously.
This will not only provide a contextual picture with regards to our Solar
system, but also presents a unique opportunity to observe size dependent
planetary atmospheres at different orbital distances. We propose a preliminary
scheme based on chemical behavior of gases and condensates in a planet's
atmosphere that classifies them with respect to planetary radius and incident
stellar flux.Comment: A white paper submitted to the National Academy of Sciences Exoplanet
Science Strateg
- âŠ