209 research outputs found

    Interference effects in the photorecombination of argonlike Sc3+ ions: Storage-ring experiment and theory

    Full text link
    Absolute total electron-ion recombination rate coefficients of argonlike Sc3+(3s2 3p6) ions have been measured for relative energies between electrons and ions ranging from 0 to 45 eV. This energy range comprises all dielectronic recombination resonances attached to 3p -> 3d and 3p -> 4s excitations. A broad resonance with an experimental width of 0.89 +- 0.07 eV due to the 3p5 3d2 2F intermediate state is found at 12.31 +- 0.03 eV with a small experimental evidence for an asymmetric line shape. From R-Matrix and perturbative calculations we infer that the asymmetric line shape may not only be due to quantum mechanical interference between direct and resonant recombination channels as predicted by Gorczyca et al. [Phys. Rev. A 56, 4742 (1997)], but may partly also be due to the interaction with an adjacent overlapping DR resonance of the same symmetry. The overall agreement between theory and experiment is poor. Differences between our experimental and our theoretical resonance positions are as large as 1.4 eV. This illustrates the difficulty to accurately describe the structure of an atomic system with an open 3d-shell with state-of-the-art theoretical methods. Furthermore, we find that a relativistic theoretical treatment of the system under study is mandatory since the existence of experimentally observed strong 3p5 3d2 2D and 3p5 3d 4s 2D resonances can only be explained when calculations beyond LS-coupling are carried out.Comment: 11 pages, 7 figures, 3 tables, Phys. Rev. A (in print), see also: http://www.strz.uni-giessen.de/~k

    An extended window of opportunity for G-CSF treatment in cerebral ischemia

    Get PDF
    BACKGROUND: Granulocyte-colony stimulating factor (G-CSF) is known as a powerful regulator of white blood cell proliferation and differentiation in mammals. We, and others, have shown that G-CSF is effective in treating cerebral ischemia in rodents, both relating to infarct size as well as functional recovery. G-CSF and its receptor are expressed by neurons, and G-CSF regulates apoptosis and neurogenesis, providing a rational basis for its beneficial short- and long-term actions in ischemia. In addition, G-CSF may contribute to re-endothelialisation and arteriogenesis in the vasculature of the ischemic penumbra. In addition to these trophic effects, G-CSF is a potent neuroprotective factor reliably reducing infarct size in different stroke models. RESULTS: Here, we have further delayed treatment and studied effects of G-CSF on infarct volume in the middle cerebral artery occlusion (MCAO) model and functional outcome in the cortical photothrombotic model. In the MCAO model, we applied a single dose of 60 ÎŒg/kg bodyweight G-CSF in rats 4 h after onset of ischemia. Infarct volume was determined 24 h after onset of ischemia. In the rat photothrombotic model, we applied 10 ÎŒg/kg bodyweight G-CSF daily for a period of 10 days starting either 24 or 72 h after induction of ischemia. G-CSF both decreased acute infarct volume in the MCAO model, and improved recovery in the photothrombotic model at delayed timepoints. CONCLUSION: These data further strengthen G-CSF's profile as a unique candidate stroke drug, and provide an experimental basis for application of G-CSF in the post-stroke recovery phase

    The BCN Challenge to Compatibilist Free Will and Personal Responsibility

    Get PDF
    Many philosophers ignore developments in the behavioral, cognitive, and neurosciences that purport to challenge our ideas of free will and responsibility. The reason for this is that the challenge is often framed as a denial of the idea that we are able to act differently than we do. However, most philosophers think that the ability to do otherwise is irrelevant to responsibility and free will. Rather it is our ability to act for reasons that is crucial. We argue that the scientific findings indicate that it is not so obvious that our views of free will and responsibility can be grounded in the ability to act for reasons without introducing metaphysical obscurities. This poses a challenge to philosophers. We draw the conclusion that philosophers are wrong not to address the recent scientific developments and that scientists are mistaken in formulating their challenge in terms of the freedom to do otherwise

    Serial expression analysis of breast tumors during neoadjuvant chemotherapy reveals changes in cell cycle and immune pathways associated with recurrence and response

    Get PDF
    Abstract Introduction The molecular biology involving neoadjuvant chemotherapy (NAC) response is poorly understood. To elucidate the impact of NAC on the breast cancer transcriptome and its association with clinical outcome, we analyzed gene expression data derived from serial tumor samples of patients with breast cancer who received NAC in the I-SPY 1 TRIAL. Methods Expression data were collected before treatment (T1), 24–96 hours after initiation of chemotherapy (T2) and at surgery (TS). Expression levels between T1 and T2 (T1 vs. T2; n = 36) and between T1 and TS (T1 vs. TS; n = 39) were compared. Subtype was assigned using the PAM50 gene signature. Differences in early gene expression changes (T2 − T1) between responders and nonresponders, as defined by residual cancer burden, were evaluated. Cox proportional hazards modeling was used to identify genes in residual tumors associated with recurrence-free survival (RFS). Pathway analysis was performed with Ingenuity software. Results When we compared expression profiles at T1 vs. T2 and at T1 vs. TS, we detected significantly altered expression of 150 and 59 transcripts, respectively. We observed notable downregulation of proliferation and immune-related genes at T2. Lower concordance in subtype assignment was observed between T1 and TS (62 %) than between T1 and T2 (75 %). Analysis of early gene expression changes (T2 − T1) revealed that decreased expression of cell cycle inhibitors was associated with poor response. Increased interferon signaling (TS − T1) and high expression of cell proliferation genes in residual tumors (TS) were associated with reduced RFS. Conclusions Serial gene expression analysis revealed candidate immune and proliferation pathways associated with response and recurrence. Larger studies incorporating the approach described here are warranted to identify predictive and prognostic biomarkers in the NAC setting for specific targeted therapies. Clinical trial registration ClinicalTrials.gov identifier: NCT00033397 . Registered 9 Apr 2002

    Associations between air temperature and cardio-respiratory mortality in the urban area of Beijing, China: a time-series analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Associations between air temperature and mortality have been consistently observed in Europe and the United States; however, there is a lack of studies for Asian countries. Our study investigated the association between air temperature and cardio-respiratory mortality in the urban area of Beijing, China.</p> <p>Methods</p> <p>Death counts for cardiovascular and respiratory diseases for adult residents (≄15 years), meteorological parameters and concentrations of particulate air pollution were obtained from January 2003 to August 2005. The effects of two-day and 15-day average temperatures were estimated by Poisson regression models, controlling for time trend, relative humidity and other confounders if necessary. Effects were explored for warm (April to September) and cold periods (October to March) separately. The lagged effects of daily temperature were investigated by polynomial distributed lag (PDL) models.</p> <p>Results</p> <p>We observed a J-shaped exposure-response function only for 15-day average temperature and respiratory mortality in the warm period, with 21.3°C as the threshold temperature. All other exposure-response functions could be considered as linear. In the warm period, a 5°C increase of two-day average temperature was associated with a RR of 1.098 (95% confidence interval (95%CI): 1.057-1.140) for cardiovascular and 1.134 (95%CI: 1.050-1.224) for respiratory mortality; a 5°C decrease of 15-day average temperature was associated with a RR of 1.040 (95%CI: 0.990-1.093) for cardiovascular mortality. In the cold period, a 5°C increase of two-day average temperature was associated with a RR of 1.149 (95%CI: 1.078-1.224) for respiratory mortality; a 5°C decrease of 15-day average temperature was associated with a RR of 1.057 (95%CI: 1.022-1.094) for cardiovascular mortality. The effects remained robust after considering particles as additional confounders.</p> <p>Conclusions</p> <p>Both increases and decreases in air temperature are associated with an increased risk of cardiovascular mortality. The effects of heat were immediate while the ones of cold became predominant with longer time lags. Increases in air temperature are also associated with an immediate increased risk of respiratory mortality.</p

    Implementing academic detailing for breast cancer screening in underserved communities

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>African American and Hispanic women, such as those living in the northern Manhattan and the South Bronx neighborhoods of New York City, are generally underserved with regard to breast cancer prevention and screening practices, even though they are more likely to die of breast cancer than are other women. Primary care physicians (PCPs) are critical for the recommendation of breast cancer screening to their patients. Academic detailing is a promising strategy for improving PCP performance in recommending breast cancer screening, yet little is known about the effects of academic detailing on breast cancer screening among physicians who practice in medically underserved areas. We assessed the effectiveness of an enhanced, multi-component academic detailing intervention in increasing recommendations for breast cancer screening within a sample of community-based urban physicians.</p> <p>Methods</p> <p>Two medically underserved communities were matched and randomized to intervention and control arms. Ninety-four primary care community (<it>i.e</it>., not hospital based) physicians in northern Manhattan were compared to 74 physicians in the South Bronx neighborhoods of the New York City metropolitan area. Intervention participants received enhanced physician-directed academic detailing, using the American Cancer Society guidelines for the early detection of breast cancer. Control group physicians received no intervention. We conducted interviews to measure primary care physicians' self-reported recommendation of mammography and Clinical Breast Examination (CBE), and whether PCPs taught women how to perform breast self examination (BSE).</p> <p>Results</p> <p>Using multivariate analyses, we found a statistically significant intervention effect on the recommendation of CBE to women patients age 40 and over; mammography and breast self examination reports increased across both arms from baseline to follow-up, according to physician self-report. At post-test, physician involvement in additional educational programs, enhanced self-efficacy in counseling for prevention, the routine use of chart reminders, computer- rather than paper-based prompting and tracking approaches, printed patient education materials, performance targets for mammography, and increased involvement of nursing and other office staff were associated with increased screening.</p> <p>Conclusion</p> <p>We found some evidence of improvement in breast cancer screening practices due to enhanced academic detailing among primary care physicians practicing in urban underserved communities.</p

    Practical recipes for the model order reduction, dynamical simulation, and compressive sampling of large-scale open quantum systems

    Full text link
    This article presents numerical recipes for simulating high-temperature and non-equilibrium quantum spin systems that are continuously measured and controlled. The notion of a spin system is broadly conceived, in order to encompass macroscopic test masses as the limiting case of large-j spins. The simulation technique has three stages: first the deliberate introduction of noise into the simulation, then the conversion of that noise into an equivalent continuous measurement and control process, and finally, projection of the trajectory onto a state-space manifold having reduced dimensionality and possessing a Kahler potential of multi-linear form. The resulting simulation formalism is used to construct a positive P-representation for the thermal density matrix. Single-spin detection by magnetic resonance force microscopy (MRFM) is simulated, and the data statistics are shown to be those of a random telegraph signal with additive white noise. Larger-scale spin-dust models are simulated, having no spatial symmetry and no spatial ordering; the high-fidelity projection of numerically computed quantum trajectories onto low-dimensionality Kahler state-space manifolds is demonstrated. The reconstruction of quantum trajectories from sparse random projections is demonstrated, the onset of Donoho-Stodden breakdown at the Candes-Tao sparsity limit is observed, a deterministic construction for sampling matrices is given, and methods for quantum state optimization by Dantzig selection are given.Comment: 104 pages, 13 figures, 2 table
    • 

    corecore