388 research outputs found

    Hydrophobic interactions: an overview

    Full text link
    We present an overview of the recent progress that has been made in understanding the origin of hydrophobic interactions. We discuss the different character of the solvation behavior of apolar solutes at small and large length scales. We emphasize that the crossover in the solvation behavior arises from a collective effect, which means that implicit solvent models should be used with care. We then discuss a recently developed explicit solvent model, in which the solvent is not described at the atomic level, but rather at the level of a density field. The model is based upon a lattice-gas model, which describes density fluctuations in the solvent at large length scales, and a Gaussian model, which describes density fluctuations at smaller length scales. By integrating out the small length scale field, a Hamiltonian is obtained, which is a function of the binary, large-length scale field only. This makes it possible to simulate much larger systems than hitherto possible as demonstrated by the application of the model to the collapse of an ideal hydrophobic polymer. The results show that the collapse is dominated by the dynamics of the solvent, in particular the formation of a vapor bubble of critical size. Implications of these findings to the understanding of pressure denaturation of proteins are discussed.Comment: 10 pages, 4 figure

    The low-density/high-density liquid phase transition for model globular proteins

    Full text link
    The effect of molecule size (excluded volume) and the range of interaction on the surface tension, phase diagram and nucleation properties of a model globular protein is investigated using a combinations of Monte Carlo simulations and finite temperature classical Density Functional Theory calculations. We use a parametrized potential that can vary smoothly from the standard Lennard-Jones interaction characteristic of simple fluids, to the ten Wolde-Frenkel model for the effective interaction of globular proteins in solution. We find that the large excluded volume characteristic of large macromolecules such as proteins is the dominant effect in determining the liquid-vapor surface tension and nucleation properties. The variation of the range of the potential only appears important in the case of small excluded volumes such as for simple fluids. The DFT calculations are then used to study homogeneous nucleation of the high-density phase from the low-density phase including the nucleation barriers, nucleation pathways and the rate. It is found that the nucleation barriers are typically only a few kBTk_{B}T and that the nucleation rates substantially higher than would be predicted by Classical Nucleation Theory.Comment: To appear in Langmui

    A possible mechanism for cold denaturation of proteins at high pressure

    Get PDF
    We study cold denaturation of proteins at high pressures. Using multicanonical Monte Carlo simulations of a model protein in a water bath, we investigate the effect of water density fluctuations on protein stability. We find that above the pressure where water freezes to the dense ice phase (2\approx2 kbar), the mechanism for cold denaturation with decreasing temperature is the loss of local low-density water structure. We find our results in agreement with data of bovine pancreatic ribonuclease A.Comment: 4 pages for double column and single space. 3 figures Added references Changed conten

    Forward Flux Sampling for rare event simulations

    Full text link
    Rare events are ubiquitous in many different fields, yet they are notoriously difficult to simulate because few, if any, events are observed in a conventiona l simulation run. Over the past several decades, specialised simulation methods have been developed to overcome this problem. We review one recently-developed class of such methods, known as Forward Flux Sampling. Forward Flux Sampling uses a series of interfaces between the initial and final states to calculate rate constants and generate transition paths, for rare events in equilibrium or nonequilibrium systems with stochastic dynamics. This review draws together a number of recent advances, summarizes several applications of the method and highlights challenges that remain to be overcome.Comment: minor typos in the manuscript. J.Phys.:Condensed Matter (accepted for publication

    Homogeneous Bubble Nucleation driven by local hot spots: a Molecular Dynamics Study

    Full text link
    We report a Molecular Dynamics study of homogenous bubble nucleation in a Lennard-Jones fluid. The rate of bubble nucleation is estimated using forward-flux sampling (FFS). We find that cavitation starts with compact bubbles rather than with ramified structures as had been suggested by Shen and Debenedetti (J. Chem. Phys. 111:3581, 1999). Our estimate of the bubble-nucleation rate is higher than predicted on the basis of Classical Nucleation Theory (CNT). Our simulations show that local temperature fluctuations correlate strongly with subsequent bubble formation - this mechanism is not taken into account in CNT

    Computing stationary distributions in equilibrium and non-equilibrium systems with Forward Flux Sampling

    Full text link
    We present a method for computing stationary distributions for activated processes in equilibrium and non-equilibrium systems using Forward Flux Sampling (FFS). In this method, the stationary distributions are obtained directly from the rate constant calculations for the forward and backward reactions; there is no need to perform separate calculations for the stationary distribution and the rate constant. We apply the method to the non-equilibrium rare event problem proposed by Maier and Stein, to nucleation in a 2-dimensional Ising system, and to the flipping of a genetic switch

    Long-Term Evolution and Revival Structure of Rydberg Wave Packets for Hydrogen and Alkali-Metal Atoms

    Full text link
    This paper begins with an examination of the revival structure and long-term evolution of Rydberg wave packets for hydrogen. We show that after the initial cycle of collapse and fractional/full revivals, which occurs on the time scale trevt_{\rm rev}, a new sequence of revivals begins. We find that the structure of the new revivals is different from that of the fractional revivals. The new revivals are characterized by periodicities in the motion of the wave packet with periods that are fractions of the revival time scale trevt_{\rm rev}. These long-term periodicities result in the autocorrelation function at times greater than trevt_{\rm rev} having a self-similar resemblance to its structure for times less than trevt_{\rm rev}. The new sequence of revivals culminates with the formation of a single wave packet that more closely resembles the initial wave packet than does the full revival at time trevt_{\rm rev}, i.e., a superrevival forms. Explicit examples of the superrevival structure for both circular and radial wave packets are given. We then study wave packets in alkali-metal atoms, which are typically used in experiments. The behavior of these packets is affected by the presence of quantum defects that modify the hydrogenic revival time scales and periodicities. Their behavior can be treated analytically using supersymmetry-based quantum-defect theory. We illustrate our results for alkali-metal atoms with explicit examples of the revival structure for radial wave packets in rubidium.Comment: To appear in Physical Review A, vol. 51, June 199

    Metastable liquid-liquid phase transition in a single-component system with only one crystal phase and no density anomaly

    Get PDF
    We investigate the phase behavior of a single-component system in 3 dimensions with spherically-symmetric, pairwise-additive, soft-core interactions with an attractive well at a long distance, a repulsive soft-core shoulder at an intermediate distance, and a hard-core repulsion at a short distance, similar to potentials used to describe liquid systems such as colloids, protein solutions, or liquid metals. We showed [Nature {\bf 409}, 692 (2001)] that, even with no evidences of the density anomaly, the phase diagram has two first-order fluid-fluid phase transitions, one ending in a gas--low-density liquid (LDL) critical point, and the other in a gas--high-density liquid (HDL) critical point, with a LDL-HDL phase transition at low temperatures. Here we use integral equation calculations to explore the 3-parameter space of the soft-core potential and we perform molecular dynamics simulations in the interesting region of parameters. For the equilibrium phase diagram we analyze the structure of the crystal phase and find that, within the considered range of densities, the structure is independent of the density. Then, we analyze in detail the fluid metastable phases and, by explicit thermodynamic calculation in the supercooled phase, we show the absence of the density anomaly. We suggest that this absence is related to the presence of only one stable crystal structure.Comment: 15 pages, 21 figure

    Hard-Sphere Fluids in Contact with Curved Substrates

    Full text link
    The properties of a hard-sphere fluid in contact with hard spherical and cylindrical walls are studied. Rosenfeld's density functional theory (DFT) is applied to determine the density profile and surface tension γ\gamma for wide ranges of radii of the curved walls and densities of the hard-sphere fluid. Particular attention is paid to investigate the curvature dependence and the possible existence of a contribution to γ\gamma that is proportional to the logarithm of the radius of curvature. Moreover, by treating the curved wall as a second component at infinite dilution we provide an analytical expression for the surface tension of a hard-sphere fluid close to arbitrary hard convex walls. The agreement between the analytical expression and DFT is good. Our results show no signs for the existence of a logarithmic term in the curvature dependence of γ\gamma.Comment: 15 pages, 6 figure

    Nonergodicity transitions in colloidal suspensions with attractive interactions

    Full text link
    The colloidal gel and glass transitions are investigated using the idealized mode coupling theory (MCT) for model systems characterized by short-range attractive interactions. Results are presented for the adhesive hard sphere and hard core attractive Yukawa systems. According to MCT, the former system shows a critical glass transition concentration that increases significantly with introduction of a weak attraction. For the latter attractive Yukawa system, MCT predicts low temperature nonergodic states that extend to the critical and subcritical region. Several features of the MCT nonergodicity transition in this system agree qualitatively with experimental observations on the colloidal gel transition, suggesting that the gel transition is caused by a low temperature extension of the glass transition. The range of the attraction is shown to govern the way the glass transition line traverses the phase diagram relative to the critical point, analogous to findings for the fluid-solid freezing transition.Comment: 11 pages, 7 figures; to be published in Phys. Rev. E (1 May 1999
    corecore