360 research outputs found
Electronic Spin Transport in Dual-Gated Bilayer Graphene
The elimination of extrinsic sources of spin relaxation is key in realizing
the exceptional intrinsic spin transport performance of graphene. Towards this,
we study charge and spin transport in bilayer graphene-based spin valve devices
fabricated in a new device architecture which allows us to make a comparative
study by separately investigating the roles of substrate and polymer residues
on spin relaxation. First, the comparison between spin valves fabricated on
SiO2 and BN substrates suggests that substrate-related charged impurities,
phonons and roughness do not limit the spin transport in current devices. Next,
the observation of a 5-fold enhancement in spin relaxation time in the
encapsulated device highlights the significance of polymer residues on spin
relaxation. We observe a spin relaxation length of ~ 10 um in the encapsulated
bilayer with a charge mobility of 24000 cm2/Vs. The carrier density dependence
of spin relaxation time has two distinct regimes; n<4 x 1012 cm-2, where spin
relaxation time decreases monotonically as carrier concentration increases, and
n>4 x 1012 cm-2, where spin relaxation time exhibits a sudden increase. The
sudden increase in the spin relaxation time with no corresponding signature in
the charge transport suggests the presence of a magnetic resonance close to the
charge neutrality point. We also demonstrate, for the first time, spin
transport across bipolar p-n junctions in our dual-gated device architecture
that fully integrates a sequence of encapsulated regions in its design. At low
temperatures, strong suppression of the spin signal was observed while a
transport gap was induced, which is interpreted as a novel manifestation of
impedance mismatch within the spin channel
Nitric oxide modulates dynamic actin cytoskeleton and vesicle trafficking in a cell type-specific manner in root apices
NO is an important regulatory molecule in eukaryotes. Much of its effect is ascribed to the action of NO as a signalling molecule. However, NO can also directly modify proteins thus affecting their activities. Although the signalling functions of NO are relatively well recognized in plants, very little is known about its potential influence on the structural integrity of plant cells. In this study, the reorganization of the actin cytoskeleton, and the recycling of wall polysaccharides in plants via the endocytic pathway in the presence of NO or NO-modulating substances were analysed. The actin cytoskeleton and endocytosis in maize (Zea mays) root apices were visualized with fluorescence immunocytochemistry. The organization of the actin cytoskeleton is modulated via NO levels and the extent of such modulation is cell-type specific. In endodermis cells, actin cables change their orientation from longitudinal to oblique and cellular cross-wall domains become actin-depleted/depolymerized. The reaction is reversible and depends on the type of NO donor. Actin-dependent vesicle trafficking is also affected. This was demonstrated through the analysis of recycled wall material transported to newly-formed cell plates and BFA compartments. Therefore, it is concluded that, in plant cells, NO affects the functioning of the actin cytoskeleton and actin-dependent processes. Mechanisms for the reorganization of the actin cytoskeleton are cell-type specific, and such rearrangements might selectively impinge on the functioning of various cellular domains. Thus, the dynamic actin cytoskeleton could be considered as a downstream effector of NO signalling in cells of root apices
Isotope Shift Measurements of Stable and Short-Lived Lithium Isotopes for Nuclear Charge Radii Determination
Changes in the mean-square nuclear charge radii along the lithium isotopic
chain were determined using a combination of precise isotope shift measurements
and theoretical atomic structure calculations. Nuclear charge radii of light
elements are of high interest due to the appearance of the nuclear halo
phenomenon in this region of the nuclear chart. During the past years we have
developed a new laser spectroscopic approach to determine the charge radii of
lithium isotopes which combines high sensitivity, speed, and accuracy to
measure the extremely small field shift of an 8 ms lifetime isotope with
production rates on the order of only 10,000 atoms/s. The method was applied to
all bound isotopes of lithium including the two-neutron halo isotope Li-11 at
the on-line isotope separators at GSI, Darmstadt, Germany and at TRIUMF,
Vancouver, Canada. We describe the laser spectroscopic method in detail,
present updated and improved values from theory and experiment, and discuss the
results.Comment: 34 pages, 24 figures, 14 table
Nanosecond spin lifetimes in single- and few-layer graphene-hBN heterostructures at room temperature
We present a new fabrication method of graphene spin-valve devices which
yields enhanced spin and charge transport properties by improving both the
electrode-to-graphene and graphene-to-substrate interface. First, we prepare
Co/MgO spin injection electrodes onto Si/SiO. Thereafter, we
mechanically transfer a graphene-hBN heterostructure onto the prepatterned
electrodes. We show that room temperature spin transport in single-, bi- and
trilayer graphene devices exhibit nanosecond spin lifetimes with spin diffusion
lengths reaching 10m combined with carrier mobilities exceeding 20,000
cm/Vs.Comment: 15 pages, 5 figure
Production of deuterium, tritium, and He in central Pb+Pb collisions at 20A, 30A, 40A, 80A, and 158A GeV at the CERN SPS
Production of , , and He nuclei in central Pb+Pb interactions was
studied at five collision energies ( 6.3, 7.6, 8.8, 12.3, and
17.3 GeV) with the NA49 detector at the CERN SPS. Transverse momentum spectra,
rapidity distributions, and particle ratios were measured. Yields are compared
to predictions of statistical models. Phase-space distributions of light nuclei
are discussed and compared to those of protons in the context of a coalescence
approach. The coalescence parameters and , as well as coalescence
radii for and He were determined as a function of transverse mass at
all energies.Comment: 22 pages, 29 figures, 8 tables, for submission to Phys. Rev.
Phase-space dependence of particle-ratio fluctuations in Pb+Pb collisions from 20A to 158A GeV beam energy
A novel approach, the identity method, was used for particle identification
and the study of fluctuations of particle yield ratios in Pb+Pb collisions at
the CERN Super Proton Synchrotron (SPS). This procedure allows to unfold the
moments of the unknown multiplicity distributions of protons (p), kaons (K),
pions () and electrons (e). Using these moments the excitation function of
the fluctuation measure [A,B] was measured, with A and
B denoting different particle types. The obtained energy dependence of
agrees with previously published NA49 results on the related
measure . Moreover, was found to depend
on the phase space coverage for [K,p] and [K,] pairs. This feature most
likely explains the reported differences between measurements of NA49 and those
of STAR in central Au+Au collisions
Energy dependence of kaon-to-proton ratio fluctuations in central Pb+Pb collisions from = 6.3 to 17.3 GeV
Kaons and protons carry large parts of two conserved quantities, strangeness
and baryon number. It is argued that their correlation and thus also
fluctuations are sensitive to conditions prevailing at the anticipated
parton-hadron phase boundary. Fluctuations of the and
ratios have been measured for the first time by NA49 in central Pb+Pb
collisions at 5 SPS energies between = 6.3 GeV and 17.3 GeV.
Both ratios exhibit a change of sign in , a measure of
non-statistical fluctuations, around = 8 GeV. Below this
energy, is positive, indicating higher fluctuation
compared to a mixed event background sample, while for higher energies,
is negative, indicating correlated emission of kaons
and protons. The results are compared to UrQMD calculations which which give a
good description at the higher SPS energies, but fail to reproduce the
transition to positive values.Comment: 5 pages, 4 figure
Centrality dependence of proton and antiproton spectra in Pb+Pb collisions at 40A GeV and 158A GeV measured at the CERN SPS
The yields of (anti-)protons were measured by the NA49 Collaboration in
centrality selected Pb+Pb collisions at 40A GeV and 158A GeV. Particle
identification was obtained in the laboratory momentum range from 5 to 63 GeV/c
by the measurement of the energy loss dE/dx in the TPC detector gas. The
corresponding rapidity coverage extends 1.6 units from mid-rapidity into the
forward hemisphere. Transverse mass spectra, the rapidity dependences of the
average transverse mass, and rapidity density distributions were studied as a
function of collision centrality. The values of the average transverse mass as
well as the midrapidity yields of protons when normalized to the number of
wounded nucleons show only modest centrality dependences. In contrast, the
shape of the rapidity distribution changes significantly with collision
centrality, especially at 40A GeV. The experimental results are compared to
calculations of the HSD and UrQMD transport models.Comment: 25 pages, 12 figures, submitted to PR
Proton -- Lambda Correlations in Central Pb+Pb Collisions at sqrt(s_{NN}) = 17.3 GeV
The momentum correlation between protons and lambda particles emitted from
central Pb+Pb collisions at sqrt(s_{NN}) = 17.3 GeV was studied by the NA49
experiment at the CERN SPS. A clear enhancement is observed for small relative
momenta (q_{inv} < 0.2 GeV). By fitting a theoretical model, which uses the
strong interaction between the proton and the lambda in a given pair, to the
measured data a value for the effective source size is deduced. Assuming a
static Gaussian source distribution we derive an effective radius parameter of
R_G = 3.02 \pm 0.20$(stat.)^{+0.44}_{-0.16}(syst.) fm.Comment: 14 pages, 9 figures, submitted to Phys. Rev.
System-size and centrality dependence of charged kaon and pion production in nucleus-nucleus collisions at 40A GeV and158A GeV beam energy
Measurements of charged pion and kaon production are presented in centrality
selected Pb+Pb collisions at 40A GeV and 158A GeV beam energy as well as in
semi-central C+C and Si+Si interactions at 40A GeV. Transverse mass spectra,
rapidity spectra and total yields are determined as a function of centrality.
The system-size and centrality dependence of relative strangeness production in
nucleus-nucleus collisions at 40A GeV and 158A GeV beam energy are derived from
the data presented here and published data for C+C and Si+Si collisions at 158A
GeV beam energy. At both energies a steep increase with centrality is observed
for small systems followed by a weak rise or even saturation for higher
centralities. This behavior is compared to calculations using transport models
(UrQMD and HSD), a percolation model and the core-corona approach.Comment: 32 pages, 14 figures, 4 tables, typo table II correcte
- …