20 research outputs found

    Training emergency services’ dispatchers to recognise stroke: an interrupted time-series analysis

    Get PDF
    Background: Stroke is a time-dependent medical emergency in which early presentation to specialist care reduces death and dependency. Up to 70% of all stroke patients obtain first medical contact from the Emergency Medical Services (EMS). Identifying ‘true stroke’ from an EMS call is challenging, with over 50% of strokes being misclassified. The aim of this study was to evaluate the impact of the training package on the recognition of stroke by Emergency Medical Dispatchers (EMDs). Methods: This study took place in an ambulance service and a hospital in England using an interrupted time-series design. Suspected stroke patients were identified in one week blocks, every three weeks over an 18 month period, during which time the training was implemented. Patients were included if they had a diagnosis of stroke (EMS or hospital). The effect of the intervention on the accuracy of dispatch diagnosis was investigated using binomial (grouped) logistic regression. Results: In the Pre-implementation period EMDs correctly identified 63% of stroke patients; this increased to 80% Post-implementation. This change was significant (p=0.003), reflecting an improvement in identifying stroke patients relative to the Pre-implementation period both the During-implementation (OR=4.10 [95% CI 1.58 to 10.66]) and Post-implementation (OR=2.30 [95% CI 1.07 to 4.92]) periods. For patients with a final diagnosis of stroke who had been dispatched as stroke there was a marginally non-significant 2.8 minutes (95% CI −0.2 to 5.9 minutes, p=0.068)reduction between Pre- and Post-implementation periods from call to arrival of the ambulance at scene. Conclusions: This is the first study to develop, implement and evaluate the impact of a training package for EMDs with the aim of improving the recognition of stroke. Training led to a significant increase in the proportion of stroke patients dispatched as such by EMDs; a small reduction in time from call to arrival at scene by the ambulance also appeared likely. The training package has been endorsed by the UK Stroke Forum Education and Training, and is free to access on-line

    Head Position in Stroke Trial (HeadPoST)- sitting-up vs lying-flat positioning of patients with acute stroke: study protocol for a cluster randomised controlled trial

    Get PDF
    Background Positioning a patient lying-flat in the acute phase of ischaemic stroke may improve recovery and reduce disability, but such a possibility has not been formally tested in a randomised trial. We therefore initiated the Head Position in Stroke Trial (HeadPoST) to determine the effects of lying-flat (0°) compared with sitting-up (≥30°) head positioning in the first 24 hours of hospital admission for patients with acute stroke. Methods/Design We plan to conduct an international, cluster randomised, crossover, open, blinded outcome-assessed clinical trial involving 140 study hospitals (clusters) with established acute stroke care programs. Each hospital will be randomly assigned to sequential policies of lying-flat (0°) or sitting-up (≥30°) head position as a ‘business as usual’ stroke care policy during the first 24 hours of admittance. Each hospital is required to recruit 60 consecutive patients with acute ischaemic stroke (AIS), and all patients with acute intracerebral haemorrhage (ICH) (an estimated average of 10), in the first randomised head position policy before crossing over to the second head position policy with a similar recruitment target. After collection of in-hospital clinical and management data and 7-day outcomes, central trained blinded assessors will conduct a telephone disability assessment with the modified Rankin Scale at 90 days. The primary outcome for analysis is a shift (defined as improvement) in death or disability on this scale. For a cluster size of 60 patients with AIS per intervention and with various assumptions including an intracluster correlation coefficient of 0.03, a sample size of 16,800 patients at 140 centres will provide 90 % power (α 0.05) to detect at least a 16 % relative improvement (shift) in an ordinal logistic regression analysis of the primary outcome. The treatment effect will also be assessed in all patients with ICH who are recruited during each treatment study period. Discussion HeadPoST is a large international clinical trial in which we will rigorously evaluate the effects of different head positioning in patients with acute stroke. Trial registration ClinicalTrials.gov identifier: NCT02162017 (date of registration: 27 April 2014); ANZCTR identifier: ACTRN12614000483651 (date of registration: 9 May 2014). Protocol version and date: version 2.2, 19 June 2014

    Systematic review of mass media interventions designed to improve public recognition of stroke symptoms, emergency response and early treatment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mass media interventions have been implemented to improve emergency response to stroke given the emergence of effective acute treatments, but their impact is unclear.</p> <p>Methods</p> <p>Systematic review of mass media interventions aimed at improving emergency response to stroke, with narrative synthesis and review of intervention development.</p> <p>Results</p> <p>Ten studies were included (six targeted the public, four both public and professionals) published between 1992 and 2010. Only three were controlled before and after studies, and only one had reported how the intervention was developed. Campaigns aimed only at the public reported significant increase in awareness of symptoms/signs, but little impact on awareness of need for emergency response. Of the two controlled before and after studies, one reported no impact on those over 65 years, the age group at increased risk of stroke and most likely to witness a stroke, and the other found a significant increase in awareness of two or more warning signs of stroke in the same group post-intervention. One campaign targeted at public and professionals did not reduce time to presentation at hospital to within two hours, but increased and sustained thrombolysis rates. This suggests the campaign had a primary impact on professionals and improved the way that services for stroke were organised.</p> <p>Conclusions</p> <p>Campaigns aimed at the public may raise awareness of symptoms/signs of stroke, but have limited impact on behaviour. Campaigns aimed at both public and professionals may have more impact on professionals than the public. New campaigns should follow the principles of good design and be robustly evaluated.</p

    Guidelines for acute ischemic stroke treatment: part I

    Full text link

    Ultrasound-enhanced systemic thrombolysis for acute ischemic stroke.

    No full text
    BACKGROUND: Transcranial Doppler ultrasonography that is aimed at residual obstructive intracranial blood flow may help expose thrombi to tissue plasminogen activator (t-PA). Our objective was to determine whether ultrasonography can safely enhance the thrombolytic activity of t-PA. METHODS: We treated all patients who had acute ischemic stroke due to occlusion of the middle cerebral artery with intravenous t-PA within three hours after the onset of symptoms. The patients were randomly assigned to receive continuous 2-MHz transcranial Doppler ultrasonography (the target group) or placebo (the control group). The primary combined end point was complete recanalization as assessed by transcranial Doppler ultrasonography or dramatic clinical recovery. Secondary end points included recovery at 24 hours, a favorable outcome at three months, and death at three months. RESULTS: A total of 126 patients were randomly assigned to receive continuous ultrasonography (63 patients) or placebo (63 patients). Symptomatic intracerebral hemorrhage occurred in three patients in the target group and in three in the control group. Complete recanalization or dramatic clinical recovery within two hours after the administration of a t-PA bolus occurred in 31 patients in the target group (49 percent), as compared with 19 patients in the control group (30 percent; P=0.03). Twenty-four hours after treatment of the patients eligible for follow-up, 24 in the target group (44 percent) and 21 in the control group (40 percent) had dramatic clinical recovery (P=0.7). At three months, 22 of 53 patients in the target group who were eligible for follow-up analysis (42 percent) and 14 of 49 in the control group (29 percent) had favorable outcomes (as indicated by a score of 0 to 1 on the modified Rankin scale) (P=0.20). CONCLUSIONS: In patients with acute ischemic stroke, continuous transcranial Doppler augments t-PA-induced arterial recanalization, with a nonsignificant trend toward an increased rate of recovery from stroke, as compared with placebo

    An Evaluation of Emergency Medical Services Stroke Protocols and Scene Times

    No full text
    BACKGROUND: Acute stroke patients require immediate medical attention. Therefore, American Stroke Association guidelines recommend that for suspected stroke cases, emergency medical services (EMS) personnel spend less than 15 minutes (min) on-scene at least 90% of the time. However, not all EMS providers include specific scene time limits in their stroke patient care protocols. OBJECTIVE: We sought to determine whether having a protocol with a specific scene time limit was associated with less time EMS spent on scene. METHODS: Stroke protocols from the 100 EMS systems in North Carolina (NC) were collected and abstracted for scene time instructions. Suspected stroke events occurring in 2009 were analyzed using data from the NC Prehospital Medical Information System. Scene time was defined as the time from EMS arrival at the scene to departure with the patient. Quantile regression was used to estimate how the 90(th) percentile of the scene time distribution varied by systems with protocol instructions limiting scene time, adjusting for system patient volume and metropolitan status. RESULTS: In 2009, 23 EMS systems in NC had no instructions regarding scene time; 73 had general instructions to minimize scene time; and 4 had a specific limit for scene time (i.e. 10 or 15 min). Among 9,723 eligible suspected stroke events, mean scene time was 15.9 min (standard deviation 6.9 min) and median scene time was 15.0 min (90th percentile 24.3 min). In adjusted quantile regression models, the estimated reduction in the 90(th) percentile scene time, comparing protocols with a specific time limit to no instructions, was 2.2 min (95% confidence interval 1.3, 3.1 min). The difference in 90(th) percentile scene time between general and absent instructions was not statistically different (0.7 min (95% confidence interval -0.1, 1.4 min)). CONCLUSION: Protocols with specific scene time limits were associated with EMS crews spending less time at the scene while general instructions were not. These findings suggest EMS systems can modestly improve scene times for stroke by specifying a time limit in their protocols
    corecore