25 research outputs found

    The Cultural Divide: Exponential Growth in Classical 2D and Metabolic Equilibrium in 3D Environments

    Get PDF
    INTRODUCTION: Cellular metabolism can be considered to have two extremes: one is characterized by exponential growth (in 2D cultures) and the other by a dynamic equilibrium (in 3D cultures). We have analyzed the proteome and cellular architecture at these two extremes and found that they are dramatically different. RESULTS: Structurally, actin organization is changed, microtubules are increased and keratins 8 and 18 decreased. Metabolically, glycolysis, fatty acid metabolism and the pentose phosphate shunt are increased while TCA cycle and oxidative phosphorylation is unchanged. Enzymes involved in cholesterol and urea synthesis are increased consistent with the attainment of cholesterol and urea production rates seen in vivo. DNA repair enzymes are increased even though cells are predominantly in Go. Transport around the cell--along the microtubules, through the nuclear pore and in various types of vesicles has been prioritized. There are numerous coherent changes in transcription, splicing, translation, protein folding and degradation. The amount of individual proteins within complexes is shown to be highly coordinated. Typically subunits which initiate a particular function are present in increased amounts compared to other subunits of the same complex. SUMMARY: We have previously demonstrated that cells at dynamic equilibrium can match the physiological performance of cells in tissues in vivo. Here we describe the multitude of protein changes necessary to achieve this performance

    Crystal structure of thebaine 6-O-demethylase from the morphine biosynthesis pathway

    Get PDF
    Thebaine 6-O-demethylase (T6ODM) from Papaver somniferum (opium poppy) is a key enzyme in the morphine biosynthesis pathway that belongs to the non-heme 2-oxoglutarate/Fe(II)-dependent dioxygenases (ODD) family. Initially, T6ODM was characterized as an enzyme catalyzing Odemethylation of thebaine to neopinone and oripavine to morphinone, however recently the substrate range of T6ODM was expanded to a number of various benzylisoquinoline alkaloids. Here, we present crystal structures of T6ODM in complexes with 2-oxoglutarate (T6ODM:2OG, PDB: 5O9W) and succinate (T6ODM:SIN, PDB: 5O7Y). The arrangement of the T6ODM’s active site is typical for proteins from the ODD family, but the enzyme is characterized by a large substrate binding cavity, whose volume can partially explain the T6ODM promiscuity. Moreover, the size of the cavity allows for binding of multiple molecules at once, posing a question about substrate-driven specificity of the enzyme

    Proteomic Comparison between Maturation Drying and Prematurely Imposed Drying of Zea mays Seeds Reveals a Potential Role of Maturation Drying in Preparing Proteins for Seed Germination, Seedling Vigor, and Pathogen Resistance

    No full text
    We have studied the role(s) of maturation drying in the acquisition of germinability, seedling vigor and pathogen resistance by comparing the proteome changes in Maize embryo and endosperm during mature and prematurely imposed drying. Prematurely imposed dried seeds at 40 days after pollination (DAP) germinated almost as well as mature seeds (at 65 DAP), but their seedling growth was slower and they were seriously infected by fungi. A total of 80 and 114 proteins were identified to change at least two-fold (p < 0.05) in abundance during maturation drying in embryo and endosperm, respectively. Fewer proteins (48 and 59 in embryo and endosperm, respectively) changed in abundance during prematurely Imposed drying. A number of proteins, 33 and 38 in embryo and endosperm, respectively, changed similarly in abundance during both maturation and prematurely imposed drying. Storage proteins were abundant in this group and may contribute to the acquisition of seed germinability. However, a relatively large number of proteins changed in the. embryo (47 spots) and endosperm (76 spots) specifically during maturation drying. Among these proteins, storage proteins in the embryo and defense proteins in the endosperm may be particularly important for seedling vigor and resistance to fungal infection, respectively

    Insights into the Cellular Response Triggered by Silver Nanoparticles Using Quantitative Proteomics

    No full text
    The use of nanoparticles in foods, materials, and clinical treatments has increased dramatically in the past decade. Because of the possibility of human exposure to nanoparticles, there is an urgent need to investigate the molecular mechanisms underlying the cellular responses that might be triggered. Such information is necessary to assess potential health risks arising from the use of nanoparticles, and for developing new formulations of next generation nanoparticles for clinical treatments. Using mass spectrometry-based proteomic technologies and complementary techniques (<i>e.g.</i>, Western blotting and confocal laser scanning microscopy), we present insights into the silver nanoparticle–protein interaction in the human LoVo cell line. Our data indicate that some unique cellular processes are driven by the size. The 100 nm nanoparticles exerted indirect effects <i>via</i> serine/threonine protein kinase (PAK), mitogen-activated protein kinase (MAPK), and phosphatase 2A pathways, and the 20 nm nanoparticles induced direct effects on cellular stress, including generation of reactive oxygen species and protein carbonylation. In addition, we report that proteins involved in SUMOylation were up-regulated after exposure to 20 nm silver nanoparticles. These results were further substantiated by the observation of silver nanoparticles entering the cells; however, data indicate that this was determined by the size of the nanoparticles, since 20 nm particles entered the cells while 100 nm particles did not

    Genome-wide screening identifies Polycomb repressive complex 1.3 as an essential regulator of human naïve pluripotent cell reprogramming.

    No full text
    Uncovering the mechanisms that establish naïve pluripotency in humans is crucial for the future applications of pluripotent stem cells including the production of human blastoids. However, the regulatory pathways that control the establishment of naïve pluripotency by reprogramming are largely unknown. Here, we use genome-wide screening to identify essential regulators as well as major impediments of human primed to naïve pluripotent stem cell reprogramming. We discover that factors essential for cell state change do not typically undergo changes at the level of gene expression but rather are repurposed with new functions. Mechanistically, we establish that the variant Polycomb complex PRC1.3 and PRDM14 jointly repress developmental and gene regulatory factors to ensure naïve cell reprogramming. In addition, small-molecule inhibitors of reprogramming impediments improve naïve cell reprogramming beyond current methods. Collectively, this work defines the principles controlling the establishment of human naïve pluripotency and also provides new insights into mechanisms that destabilize and reconfigure cell identity during cell state transitions

    Proteomic Comparison between Maturation Drying and Prematurely Imposed Drying of <i>Zea mays</i> Seeds Reveals a Potential Role of Maturation Drying in Preparing Proteins for Seed Germination, Seedling Vigor, and Pathogen Resistance

    No full text
    We have studied the role(s) of maturation drying in the acquisition of germinability, seedling vigor and pathogen resistance by comparing the proteome changes in maize embryo and endosperm during mature and prematurely imposed drying. Prematurely imposed dried seeds at 40 days after pollination (DAP) germinated almost as well as mature seeds (at 65 DAP), but their seedling growth was slower and they were seriously infected by fungi. A total of 80 and 114 proteins were identified to change at least two-fold (<i>p</i> < 0.05) in abundance during maturation drying in embryo and endosperm, respectively. Fewer proteins (48 and 59 in embryo and endosperm, respectively) changed in abundance during prematurely imposed drying. A number of proteins, 33 and 38 in embryo and endosperm, respectively, changed similarly in abundance during both maturation and prematurely imposed drying. Storage proteins were abundant in this group and may contribute to the acquisition of seed germinability. However, a relatively large number of proteins changed in the embryo (47 spots) and endosperm (76 spots) specifically during maturation drying. Among these proteins, storage proteins in the embryo and defense proteins in the endosperm may be particularly important for seedling vigor and resistance to fungal infection, respectively
    corecore