43 research outputs found
Multivalent display of minimal Clostridium difficile glycan epitopes mimics antigenic properties of larger glycans
Synthetic cell-surface glycans are promising vaccine candidates against
Clostridium difficile. The complexity of large, highly antigenic and
immunogenic glycans is a synthetic challenge. Less complex antigens providing
similar immune responses are desirable for vaccine development. Based on
molecular-level glycan–antibody interaction analyses, we here demonstrate that
the C. difficile surface polysaccharide-I (PS-I) can be resembled by
multivalent display of minimal disaccharide epitopes on a synthetic scaffold
that does not participate in binding. We show that antibody avidity as a
measure of antigenicity increases by about five orders of magnitude when
disaccharides are compared with constructs containing five disaccharides. The
synthetic, pentavalent vaccine candidate containing a peptide T-cell epitope
elicits weak but highly specific antibody responses to larger PS-I glycans in
mice. This study highlights the potential of multivalently displaying small
oligosaccharides to achieve antigenicity characteristic of larger glycans. The
approach may result in more cost-efficient carbohydrate vaccines with reduced
synthetic effort
JASPer controls interphase histone H3S10 phosphorylation by chromosomal kinase JIL-1 in Drosophila
In flies, the chromosomal kinase JIL-1 is responsible for most interphase histone H3S10 phosphorylation and has been proposed to protect active chromatin from acquiring heterochromatic marks, such as dimethylated histone H3K9 (H3K9me2) and HP1. Here, we show that JIL-1's targeting to chromatin depends on a PWWP domain-containing protein JASPer (JIL-1 Anchoring and Stabilizing Protein). JASPer-JIL-1 (JJ)-complex is the major form of kinase in vivo and is targeted to active genes and telomeric transposons via binding of the PWWP domain of JASPer to H3K36me3 nucleosomes, to modulate transcriptional output. JIL-1 and JJ-complex depletion in cycling cells lead to small changes in H3K9me2 distribution at active genes and telomeric transposons. Finally, we identify interactors of the endogenous JJ-complex and propose that JIL-1 not only prevents heterochromatin formation but also coordinates chromatin-based regulation in the transcribed part of the genome
Effectiveness of an intensive care telehealth programme to improve process quality (ERIC): a multicentre stepped wedge cluster randomised controlled trial
Purpose!#!Supporting the provision of intensive care medicine through telehealth potentially improves process quality. This may improve patient recovery and long-term outcomes. We investigated the effectiveness of a multifaceted telemedical programme on the adherence to German quality indicators (QIs) in a regional network of intensive care units (ICUs) in Germany.!##!Methods!#!We conducted an investigator-initiated, large-scale, open-label, stepped-wedge cluster randomised controlled trial enrolling adult ICU patients with an expected ICU stay of ≥ 24 h. Twelve ICU clusters in Berlin and Brandenburg were randomly assigned to three sequence groups to transition from control (standard care) to the intervention condition (telemedicine). The quality improvement intervention consisted of daily telemedical rounds guided by eight German acute ICU care QIs and expert consultations. Co-primary effectiveness outcomes were patient-specific daily adherence (fulfilled yes/no) to QIs, assessed by a central end point adjudication committee. Analyses used mixed-effects logistic modelling adjusted for time. This study is completed and registered with ClinicalTrials.gov (NCT03671447).!##!Results!#!Between September 4, 2018, and March 31, 2020, 1463 patients (414 treated on control, 1049 on intervention condition) were enrolled at ten clusters, resulting in 14,783 evaluated days. Two randomised clusters recruited no patients (one withdrew informed consent; one dropped out). The intervention, as implemented, significantly increased QI performance for 'sedation, analgesia and delirium' (adjusted odds ratio (99.375% confidence interval [CI]) 5.328, 3.395-8.358), 'ventilation' (OR 2.248, 1.198-4.217), 'weaning from ventilation' (OR 9.049, 2.707-30.247), 'infection management' (OR 4.397, 1.482-13.037), 'enteral nutrition' (OR 1.579, 1.032-2.416), 'patient and family communication' (OR 6.787, 3.976-11.589), and 'early mobilisation' (OR 3.161, 2.160-4.624). No evidence for a difference in adherence to 'daily multi-professional and interdisciplinary clinical visits' between both conditions was found (OR 1.606, 0.780-3.309). Temporal trends related and unrelated to the intervention were detected. 149 patients died during their index ICU stay (45 treated on control, 104 on intervention condition).!##!Conclusion!#!A telemedical quality improvement program increased adherence to seven evidence-based German performance indicators in acute ICU care. These results need further confirmation in a broader setting of regional, non-academic community hospitals and other healthcare systems
Modeling of GERDA Phase II data
The GERmanium Detector Array (GERDA) experiment at the Gran Sasso underground
laboratory (LNGS) of INFN is searching for neutrinoless double-beta
() decay of Ge. The technological challenge of GERDA is
to operate in a "background-free" regime in the region of interest (ROI) after
analysis cuts for the full 100kgyr target exposure of the
experiment. A careful modeling and decomposition of the full-range energy
spectrum is essential to predict the shape and composition of events in the ROI
around for the search, to extract a precise
measurement of the half-life of the double-beta decay mode with neutrinos
() and in order to identify the location of residual
impurities. The latter will permit future experiments to build strategies in
order to further lower the background and achieve even better sensitivities. In
this article the background decomposition prior to analysis cuts is presented
for GERDA Phase II. The background model fit yields a flat spectrum in the ROI
with a background index (BI) of cts/(kgkeVyr) for the enriched BEGe data set and
cts/(kgkeVyr) for the
enriched coaxial data set. These values are similar to the one of Gerda Phase I
despite a much larger number of detectors and hence radioactive hardware
components
Monogenic variants in dystonia: an exome-wide sequencing study
Background Dystonia is a clinically and genetically heterogeneous condition that occurs in isolation (isolated dystonia), in combination with other movement disorders (combined dystonia), or in the context of multisymptomatic phenotypes (isolated or combined dystonia with other neurological involvement). However, our understanding of its aetiology is still incomplete. We aimed to elucidate the monogenic causes for the major clinical categories of dystonia. Methods For this exome-wide sequencing study, study participants were identified at 33 movement-disorder and neuropaediatric specialty centres in Austria, Czech Republic, France, Germany, Poland, Slovakia, and Switzerland. Each individual with dystonia was diagnosed in accordance with the dystonia consensus definition. Index cases were eligible for this study if they had no previous genetic diagnosis and no indication of an acquired cause of their illness. The second criterion was not applied to a subset of participants with a working clinical diagnosis of dystonic cerebral palsy. Genomic DNA was extracted from blood of participants and whole-exome sequenced. To find causative variants in known disorder-associated genes, all variants were filtered, and unreported variants were classified according to American College of Medical Genetics and Genomics guidelines. All considered variants were reviewed in expert round-table sessions to validate their clinical significance. Variants that survived filtering and interpretation procedures were defined as diagnostic variants. In the cases that went undiagnosed, candidate dystonia-causing genes were prioritised in a stepwise workflow. Findings We sequenced the exomes of 764 individuals with dystonia and 346 healthy parents who were recruited between June 1, 2015, and July 31, 2019. We identified causative or probable causative variants in 135 (19%) of 728 families, involving 78 distinct monogenic disorders. We observed a larger proportion of individuals with diagnostic variants in those with dystonia (either isolated or combined) with coexisting non-movement disorder-related neurological symptoms (100 [45%] of 222;excepting cases with evidence of perinatal brain injury) than in those with combined (19 [19%] of 98) or isolated (16 [4%] of 388) dystonia. Across all categories of dystonia, 104 (65%) of the 160 detected variants affected genes which are associated with neurodevelopmental disorders. We found diagnostic variants in 11 genes not previously linked to dystonia, and propose a predictive clinical score that could guide the implementation of exome sequencing in routine diagnostics. In cases without perinatal sentinel events, genomic alterations contributed substantively to the diagnosis of dystonic cerebral palsy. In 15 families, we delineated 12 candidate genes. These include IMPDH2, encoding a key purine biosynthetic enzyme, for which robust evidence existed for its involvement in a neurodevelopmental disorder with dystonia. We identified six variants in IMPDH2, collected from four independent cohorts, that were predicted to be deleterious de-novo variants and expected to result in deregulation of purine metabolism. Interpretation In this study, we have determined the role of monogenic variants across the range of dystonic disorders, providing guidance for the introduction of personalised care strategies and fostering follow-up pathophysiological explorations
Recommended from our members
Modeling of GERDA Phase II data
The GERmanium Detector Array (Gerda) experiment at the Gran Sasso underground laboratory (LNGS) of INFN is searching for neutrinoless double-beta (0νββ) decay of 76Ge. The technological challenge of Gerda is to operate in a “background-free” regime in the region of interest (ROI) after analysis cuts for the full 100 kg·yr target exposure of the experiment. A careful modeling and decomposition of the full-range energy spectrum is essential to predict the shape and composition of events in the ROI around Qββ for the 0νββ search, to extract a precise measurement of the half-life of the double-beta decay mode with neutrinos (2νββ) and in order to identify the location of residual impurities. The latter will permit future experiments to build strategies in order to further lower the background and achieve even better sensitivities. In this article the background decomposition prior to analysis cuts is presented for Gerda Phase II. The background model fit yields a flat spectrum in the ROI with a background index (BI) of 16.04+0.78−0.85⋅10−3 cts/(keV·kg·yr) for the enriched BEGe data set and 14.68+0.47−0.52⋅10−3 cts/(keV·kg·yr) for the enriched coaxial data set. These values are similar to the one of Phase I despite a much larger number of detectors and hence radioactive hardware components
Solid-Phase Synthesis of Asymmetrically Branched Sequence-Defined Poly/Oligo(amidoamines)
We present for the first time the synthesis of asymmetrically
branched
sequence-defined poly/oligo(amidoamines) (PAAs) using solid-phase
synthesis with the capability of introducing diversity at the side
chains. We introduce two new versatile (diethylenetriamine) building
blocks for solid-phase synthesis bearing Fmoc/Boc and Fmoc/Alloc protecting
groups expanding recently used Fmoc/Boc protecting group strategy
for linear PAAs to an Fmoc/Alloc/Boc strategy. This allows for orthogonal
on-resin cleavage of Fmoc and Alloc protecting groups during solid-phase
synthesis of PAAs with backbones differing in chain length and sequence.
With these structures we then demonstrate the potential for generating
asymmetrical branching by automated multiple on-resin cleavage of
Alloc protecting groups as well as the introduction of side chains
varying in length and number. Such systems have high potential as
nonviral vectors for gene delivery and will allow for more detailed
studies on the correlation between the degree of branching of PAAs
and their resulting biological properties
Functional crosstalk between histone H2B ubiquitylation and H2A modifications and variants
Ubiquitylation of histone H2B at lysine residue 120 (H2BK120ub) is a prominent histone posttranslational modification (PTM) associated with the actively transcribed genome. Although H2BK120ub triggers several critical downstream histone modification pathways and changes in chromatin structure, less is known about the regulation of the ubiquitylation reaction itself, in particular with respect to the modification status of the chromatin substrate. Here we employ an unbiased library screening approach to profile the impact of pre-existing chromatin modifications on de novo ubiquitylation of H2BK120 by the cognate human E2:E3 ligase pair, UBE2A:RNF20/40. Deposition of H2BK120ub is found to be highly sensitive to PTMs on the N-terminal tail of histone H2A, a crosstalk that extends to the common histone variant H2A.Z. Based on a series of biochemical and cell-based studies, we propose that this crosstalk contributes to the spatial organization of H2BK120ub on gene bodies, and is thus important for transcriptional regulation.ISSN:2041-172