20 research outputs found

    Heteroacene-Based Amphiphile as a Molecular Scaffold for Bioimaging Probes

    Get PDF
    The challenges faced with current fluorescence imaging agents have motivated us to study two nanostructures based on a hydrophobic dye, 6H-pyrrolo[3,2-b:4,5-bā€™]bis [1,4]benzothiazine (TRPZ). TRPZ is a heteroacene with a rigid, pi-conjugated structure, multiple reactive sites, and unique spectroscopic properties. Here we coupled TRPZ to a tert-butyl carbamate (BOC) protected 2,2-bis(hydroxymethyl)propanoic acid (bisMPA) dendron via azide-alkyne Huisgen cycloaddition. Deprotection of the protected amine groups on the dendron afforded a cationic terminated amphiphile, TRPZ-bisMPA. TRPZ-bisMPA was nanoprecipitated into water to obtain nanoparticles (NPs) with a hydrodynamic radius that was \u3c150 nm. For comparison, TRPZ-PG was encapsulated in pluronic-F127 (Mw = 12 kD), a polymer surfactant to afford NPs almost twice as large as those formed by TRPZ-bisMPA. Size and stability studies confirm the suitability of the TRPZ-bisMPA NPs for biomedical applications. The photophysical properties of the TRPZ-bisMPA NPs show a quantum yield of 49%, a Stokes shift of 201 nm (0.72 eV) and a lifetime of 6.3 ns in water. Further evidence was provided by cell viability and cellular uptake studies confirming the low cytotoxicity of TRPZ-bisMPA NPs and their potential in bioimaging

    Degradation, Bioactivity, and Osteogenic Potential of Composites Made of PLGA and Two Different Solā€“Gel Bioactive Glasses

    Get PDF
    We have developed poly(l-lactide-co-glycolide) (PLGA) based composites using solā€“gel derived bioactive glasses (S-BG), previously described by our group, as composite components. Two different composite types were manufactured that contained either S2ā€”high content silica S-BG, or A2ā€”high content lime S-BG. The composites were evaluated in the form of sheets and 3D scaffolds. Sheets containing 12, 21, and 33Ā vol.% of each bioactive glass were characterized for mechanical properties, wettability, hydrolytic degradation, and surface bioactivity. Sheets containing A2 S-BG rapidly formed a hydroxyapatite surface layer after incubation in simulated body fluid. The incorporation of either S-BG increased the tensile strength and Youngā€™s modulus of the composites and tailored their degradation rates compared to starting compounds. Sheets and 3D scaffolds were evaluated for their ability to support growth of human bone marrow cells (BMC) and MG-63 cells, respectively. Cells were grown in non-differentiating, osteogenic or osteoclast-inducing conditions. Osteogenesis was induced with either recombinant human BMP-2 or dexamethasone, and osteoclast formation with M-CSF. BMC viability was lower at higher S-BG content, though specific ALP/cell was significantly higher on PLGA/A2-33 composites. Composites containing S2 S-BG enhanced calcification of extracellular matrix by BMC, whereas incorporation of A2 S-BG in the composites promoted osteoclast formation from BMC. MG-63 osteoblast-like cells seeded in porous scaffolds containing S2 maintained viability and secreted collagen and calcium throughout the scaffolds. Overall, the presented data show functional versatility of the composites studied and indicate their potential to design a wide variety of implant materials differing in physico-chemical properties and biological applications. We propose these solā€“gel derived bioactive glassā€“PLGA composites may prove excellent potential orthopedic and dental biomaterials supporting bone formation and remodeling

    Quantum Chemical Studies on Molecular and Electronic Structure of Platinum and Tin Adducts with Guanine

    No full text
    The electronic structure of model platinum-guanine and tin-guanine adducts has been studied both at semiempirical level and by using ab initio methods at the correlation level. The possible binding energies have been evaluated and most probable strustures were determined. In all cases the binding enegies of the gaseous tin chelates are rather large. The stabilizing role of the hydrogen bonds has been pointed out in tinguanine chelates as well as comparison with the relevant platinum complexes is discussed

    Homology Modeling and Molecular Dynamics-Driven Search for Natural Inhibitors That Universally Target Receptor-Binding Domain of Spike Glycoprotein in SARS-CoV-2 Variants

    No full text
    The rapid spread of SARS-CoV-2 required immediate actions to control the transmission of the virus and minimize its impact on humanity. An extensive mutation rate of this viral genome contributes to the virus’ ability to quickly adapt to environmental changes, impacts transmissibility and antigenicity, and may facilitate immune escape. Therefore, it is of great interest for researchers working in vaccine development and drug design to consider the impact of mutations on virus-drug interactions. Here, we propose a multitarget drug discovery pipeline for identifying potential drug candidates which can efficiently inhibit the Receptor Binding Domain (RBD) of spike glycoproteins from different variants of SARS-CoV-2. Eight homology models of RBDs for selected variants were created and validated using reference crystal structures. We then investigated interactions between host receptor ACE2 and RBDs from nine variants of SARS-CoV-2. It led us to conclude that efficient multi-variant targeting drugs should be capable of blocking residues Q(R)493 and N487 in RBDs. Using methods of molecular docking, molecular mechanics, and molecular dynamics, we identified three lead compounds (hesperidin, narirutin, and neohesperidin) suitable for multitarget SARS-CoV-2 inhibition. These compounds are flavanone glycosides found in citrus fruits – an active ingredient of Traditional Chinese Medicines. The developed pipeline can be further used to (1) model mutants for which crystal structures are not yet available and (2) scan a more extensive library of compounds against other mutated viral proteins

    Investigation of cannabidiolā€™s potential targets in limbic seizures. <i>In-silico</i> approach

    No full text
    Even though the vast armamentarium of FDA-approved antiepileptic drugs is currently available, over one-third of patients do not respond to medication, which arises a need for alternative medicine. In clinical and preclinical studies, various investigations have shown the advantage of specific plant-based cannabidiol (CBD) products in treating certain groups of people with limbic epilepsy who have failed to respond to conventional therapies. This work aims to investigate possible mechanisms by which CBD possesses its anticonvulsant properties. Molecular targets for CBDā€™s treatment of limbic epilepsy, including hyperpolarization-activated cyclic nucleotide-gated channel 1 (HCN1), gamma-aminobutyric acid aminotransferase (GABA-AT), and gamma-aminobutyric acid type A receptor (GABAA), were used to evaluate its binding affinity. Interactions with the CB1 receptor were initially modeled as a benchmark, which further proved the efficiency of proposed here approach. Considering the successful benchmark, we further used the same concept for in silico investigation, targeting proteins of interest. As a result of molecular docking, molecular mechanics, and molecular dynamics simulations models of CBD-receptor complexes were proposed and evaluated. While CBD possessed decently high affinity and stability within the binding pockets of GABA-AT and some binding sites of GABAA, the most effective binding was observed in the CBD complex with HCN1 receptor. 100ā€‰ns molecular dynamics simulation revealed that CBD binds the open pore of HCN1 receptor, forming a similar pattern of interactions as potent Lamotrigine. Therefore, we can propose that HCN1 can serve as a most potent target for cannabinoid antiepileptic treatment. Communicated by Ramaswamy H. Sarma</p

    Ultra Bright Nearā€Infrared Sulfonateā€Indolizine Cyanineā€ and Squaraineā€Albumin Chaperones: Record Quantum Yields and Applications

    No full text
    The design of bright, high quantum yield (QY) materials in the near-infrared (NIR) spectral region in water remains a significant challenge. A series of cyanine and squaraine dyes varying water solubilizing groups and heterocycles are studied to probe the interactions of these groups with albumin in water. Unprecedented, \u27ultra bright\u27 emission in water is observed for a sulfonate indolizine squaraine dye (61.1% QY) and a sulfonate indolizine cyanine dye (46.7% QY) at NIR wavelengths of \u3e700 nm and \u3e800 nm, respectively. The dyes presented herein have a lower limit of detection than the most sensitive dyes known in the NIR region for albumin detection by at least an order of magnitude, which enables more sensitive diagnostic testing. Additionally, biotinylated human serum albumin complexed with the dyes reported herein was observed to function as an immunohistochemical reagent enabling high resolution imaging of cellular Ī±-tubulin at low dye concentrations

    3-D-Printed Flat Optics for THz Linear Scanners

    No full text
    THz beam shaping via a single diffractive optical element is used to convert a divergent beam into a focal line segment perpendicular to the optical axis. The novel structure was designed for narrowband applications as a kinoform element and we successfully applied it in active, high-speed, THz linear scanners. The theoretical approach and experimental results are presented
    corecore