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Heteroacene-Based Amphiphile as a
Molecular Scaffold for Bioimaging
Probes
Tharindu A. Ranathunge1, Mahesh Loku Yaddehige1, Jordan H. Varma1, Cameron Smith1,
Jay Nguyen2, Iyanuoluwani Owolabi2, Wojciech Kolodziejczyk3, Nathan I. Hammer1,
Glake Hill 3, Alex Flynt2 and Davita L. Watkins1*

1Department of Chemistry and Biochemistry, University of Mississippi University, Oxford, MS, United States, 2Cellular and
Molecular Biology, The University of Southern Mississippi, Hattiesburg, MS, United States, 3Interdisciplinary Center for
Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS,
United States

The challenges faced with current fluorescence imaging agents have motivated us to study
two nanostructures based on a hydrophobic dye, 6H-pyrrolo[3,2-b:4,5-b’]bis [1,4]
benzothiazine (TRPZ). TRPZ is a heteroacene with a rigid, pi-conjugated structure,
multiple reactive sites, and unique spectroscopic properties. Here we coupled TRPZ to
a tert-butyl carbamate (BOC) protected 2,2-bis(hydroxymethyl)propanoic acid (bisMPA)
dendron via azide-alkyne Huisgen cycloaddition. Deprotection of the protected amine
groups on the dendron afforded a cationic terminated amphiphile, TRPZ-bisMPA.
TRPZ-bisMPA was nanoprecipitated into water to obtain nanoparticles (NPs) with a
hydrodynamic radius that was <150 nm. For comparison, TRPZ-PGwas encapsulated in
pluronic-F127 (Mw � 12 kD), a polymer surfactant to afford NPs almost twice as large as
those formed by TRPZ-bisMPA. Size and stability studies confirm the suitability of the
TRPZ-bisMPA NPs for biomedical applications. The photophysical properties of the
TRPZ-bisMPANPs show a quantum yield of 49%, a Stokes shift of 201 nm (0.72 eV) and
a lifetime of 6.3 ns in water. Further evidence was provided by cell viability and cellular
uptake studies confirming the low cytotoxicity of TRPZ-bisMPANPs and their potential in
bioimaging.

Keywords: bioimaging, Stokes-shift, heteroacenes, amphiphile, nanoparticles

INTRODUCTION

Bioimaging techniques are crucial to understanding biological processes of living systems. Among
many imaging techniques, fluorescence imaging (visible to near-infrared, >400 nm) is a powerful,
noninvasive method for diagnostics. It can provide excellent spatiotemporal resolution that affords
the investigation of biological systems in real-time (Haustein and Schwille, 2007). In light of the
aforementioned advantages, some application-based drawbacks remain in regards to the most
common imaging agents and dyes (James and Gambhir, 2012). These include inadequate stability,
low water solubility, and poor biocompatibility (Choi and Frangioni, 2010; Khan et al., 2019).

Inorganic hybrids such as single-wall carbon nanotubes (SWCNTs) (Jena et al., 2020) and
inorganic quantum dots (QDs) (Gil et al., 2021) currently show the most promise, possessing high
stability; however, these materials exhibit poor metabolism and high toxicity (Gil et al., 2021).
Seeking solely organic or carbon-based alternatives, fluorescent dyes, e.g., rhodamine, (Grimm et al.,
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2020), fluorescein, (Ando et al., 2019), oxazine, (Vogelsang et al.,
2009), have been widely adopted. However, they too exhibit
unfavorable properties, specifically small Stokes shifts, which
typically results in self-quenching and images with poor
signal-to-noise ratios. With considerable interest in bioimaging
applications, focused strategies have been in place to garner
highly soluble emissive materials with low toxicity and large
Stokes shifts for accurate and high-resolution images.

Current research efforts in bioimaging have taken a more
supramolecular approach in which nanoparticles (NPs) are
beginning to dominate (Mourdikoudis et al., 2018; Zhang
et al., 2019; Zhang et al., 2020). These strategies have afforded
biocompatible, water-soluble efficient probes where hydrophobic
fluorophores undergo a structural organization that contributes
to favorable photophysical properties. In this study, we designed
and synthesized a heteroacene amphiphile based on 6H-pyrrolo
[3,2-b:4,5-b’]bis[1,4]benzothiazine (TRPZ). The structures of
interest are shown in Figure 1, where the hydrophobic
framework of TRPZ has been modified to form a self-
assembling species capable of forming stable NPs for
bioimaging applications.

TRPZ is similar to pentacene and pyrene in that it possesses a
conjugated structure and unique spectroscopic properties. Its
structure readily forms pi-aggregates/excimers at high
concentrations due to the stacking interactions of the pi-
conjugated backbone resulting in a red-shift of the
fluorescence and a bright green-yellow emission. Additionally,
it possesses multiple reactive sites with the central pyrrole

nitrogen atom offering a diverse library of derivatives with
potentially unique functionalities.

Here we propargylated the central nitrogen on TRPZ (TRPZ-
PG) and coupled it to a dendritic bisMPA alanine possessing
protected amine termini via copper(I)-catalyzed azide-alkyne
cycloaddition (CuAAC). Deprotection of tert-butyl carbamates
(BOC) protected amine groups with trifluoroacetic acid (TFA)
afforded a cationic terminated TRPZ-bisMPA amphiphile. In
aqueous media, TRPZ-bisMPA is capable of self-assembling
into nanoparticles (NPs) where TRPZ makes up the core and
bisMPA is the corona or exterior. In parallel, TRPZ-PG was
encapsulated in pluronic-F127 (Mw � 12 kD), a polymer
surfactant, to make a second NP system, TRPZ-127 NPs. We
report the size and photophysical properties of the two resulting
NP systems. Based on these results, TRPZ-bisMPA was then
assessed via biological studies to demonstrate TRPZ as a
promising platform for designing new versatile bioimaging
probes.

MATERIALS AND METHODS

Reagents and solvents were purchased from Sigma-Aldrich and
used without further purification unless otherwise specified. All
synthetic procedures were carried out under nitrogen atmosphere
using standard Schlenk line techniques unless otherwise stated.
Additional synthetic details and general procedures are given in
the electronic supporting information (SI).

FIGURE 1 | Structure of TRPZ-bisMPA (top) and TRPZ-PG (bottom) (A); depiction of TRPZ-bisMPA dye-polymer amphiphile self-assembly and TRPZ-PG-
Pluronic F-127 (TRPZ-127) (B).
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Synthesis of A-MPA-4-ala
Synthesis of (2,2,5-trimethyl-1,3-dioxan-5-yl)methanol (2):
The 2-(hydroxymethyl)-2-methylpropane-1,3-diol (10.10 g,
80.1 mmol) was stirred in 50 ml of acetone, 2,2-
dimethoxypropane (DMP) (13.1 g, 126 mmol) and PTSA (0.79
g, 4.14 mmol) were added under room temperature. After the
completion of the addition, the reaction mixture was stirred for
4 h. Then it was filtered through an amberlyst column, and the
solvent was evaporated, and the residue was put under 60°C and
full vacuum for 2 h. Then it was put under vacuum overnight to
give (2) as a colorless liquid with 96% yield. 1H NMR (500 MHz,
CDCl3) δ 3.67 [m, (d, s overlap J � 11.8 Hz, 2H; s, 2H)], 3.60 (d, J
� 11.8 Hz, 2H), 2.55 (s, 1H), 1.44 (s, 3H), 1.40 (s, 3H), 0.83 (s, 3H).

Synthesis of (2,2,5-trimethyl-1,3-dioxan-5-yl)methyl 4-
methylbenzenesulfonate (3): Compound (2) (10.9 g,
68.0 mmol) was dissolved in 34 ml of pyridine, and it was
added dropwise to the stirred solution of p-toluenesulfonyl
chloride (35.7 g, 187 mmol) in 48 ml of pyridine at 0°C under
nitrogen. After the complete addition, the reaction mixture was
stirred 48 h at room temperature. Then the reaction mixture was
added dropwise to 100 ml of 40% ammonium chloride solution at
0°C. After complete addition, it was allowed to stir at room
temperature for 2 h. Then it was filtered and washed with DI
water until the pyridine smell was gone. Then the residue was
dissolved in 25 ml of DCM and extracted with half saturated
ammonium chloride and saturated NaCl solution. Yellow DCM
solution was dried with anhydrous sodium sulfate. Then the
solvent was evaporated, and the residue was placed under full
vacuum for 12 h to give (3) as a yellow solid with 89% yield. 1H
NMR (500 MHz, CDCl3) δ 7.86–7.79 (m, 2H), 7.38 (d, J � 7.6 Hz,
2H), 4.11 (s, 2H), 3.58 (s, 4H), 2.47 (s, 3H), 1.39 (d, J � 4.8 Hz,
3H), 1.25 (d, J � 4.7 Hz, 3H), 0.84 (s, 3H).

Synthesis of 5-(azidomethyl)-2,2,5-trimethyl-1,3-dioxane
(4): Compound (3) (14.6 g, 46.4 mmol), NaN3 (12.1 g,
186 mmol), water (10 ml), and DMF (80 ml) were stirred at
110°C for 48 h under reflux. The mixture was poured into
150 ml water and extracted four times with Et2O (4 × 200 ml).
The organic phase was dried over anhydrous MgSO4, and the
solvent was removed under reduced pressure. The residue was
purified by column chromatography with silica gel (100 g) and
ethyl acetate/n-hexane (1:4) to give 7.48 g of a colorless liquid
with an 87% yield. 1H NMR (500 MHz, CDCl3) δ 3.58 (d, J �
2.8 Hz, 4H), 3.51 (s, 2H), 1.40 (d, J � 13.8 Hz, 6H), 0.81 (d, J �
1.1 Hz, 3H).

Synthesis of 2-(azidomethyl)-2-methylpropane-1,3-diol (5):
Compound (4) (7.05 g, 40.3 mmol) was dissolved in 35 ml of
methanol. 7.00 g of a Dowex, acid resin was added, and the
reaction mixture was stirred for 12 h at 50°C. When the reaction
was complete, the Dowex was filtered off in a vacuum filter under
a low vacuum and carefully washed with methanol. The methanol
was evaporated to give 5.41 g of white crystals with a 93% yield.
1H NMR (400 MHz, CDCl3) δ 3.73–3.58 (m, 4H), 3.56–3.43 (m,
2H), 2.19 (s, 2H), 0.89 (d, J � 2.0 Hz, 3H).

Synthesis of A-MPA-4-AC (6): 2,2,5-trimethyl-1,3-dioxane-
5-carboxylic acid was prepared using similar method mentioned
in compound (2) synthesis. 2,2,5-trimethyl-1,3-dioxane-5-
carboxylic acid (6.48 g, 37.2 mmol), 1,1′-carbonyldiimidazole

(CDI) (9.05 g, 55.8 mmol) were dissolved in 30 ml of ethyl
acetate and it was stirred 1 h at 50°C. CsF (0.75 g, 4.93 mmol),
Compound (5) (1.80 g, 12.4 mmol) were dissolved in 10 ml of
ethyl acetate separately, and it was slowly added to the reaction
mixture under nitrogen at 50°C. It was stirred for 12 h. When the
reaction was complete 200 ml DI water was added and allowed to
stir for 2 h at room temperature. Then it was extracted with 1 M
HCl (200 ml × 3), 1 M NaHSO4 (200 ml × 3), 10% Na2CO3,
saturated NaCl (200 ml), and it was dried under anhydrous
MgSO4. Ethyl acetate was evaporated to give 5.22 g of colorless
oil liquid with a 92% yield. 1H NMR (500 MHz, CDCl3) δ 4.21 (d,
J � 11.7 Hz, 4H), 4.13–4.09 (m, 4H), 3.68 (d, J � 11.7 Hz, 4H),
3.42–3.39 (m, 2H), 1.43 (d, J � 32.2 Hz, 12H), 1.18 (d, J � 1.6 Hz,
6H), 1.08 (d, J � 1.5 Hz, 3H).

Synthesis of A-MPA-4-OH (7): Compound (6) (5.00 g,
10.9 mmol) was dissolved in 20 ml of methanol. 5.00 g of a
Dowex, acid resin was added, and the reaction mixture was
stirred for 12 h at 50°C. When the reaction was complete the
Dowex, acid resin was filtered off in a vacuum filter under a low
vacuum and carefully washed with methanol. The methanol was
evaporated to give 3.96 g of colorless liquid with a 96% yield. 1H
NMR (300 MHz, CDCl3) δ 4.09 (s, 4H), 3.88 (d, J � 11.2 Hz, 4H),
3.78–3.67 (m, 4H), 3.43 (s, 4H), 3.38 (s, 2H), 1.12–1.09 (m, 6H),
1.09–1.07 (m, 3H).

Synthesis of A-MPA-4-ala (8): N-boc-alanine (3.70 g,
19.6 mmol), 1,1′-carbonyldiimidazole (CDI) (3.49 g,
21.5 mmol) were dissolved in 30 ml of dry ethyl acetate, and it
was stirred for 1 h at 50°C. CsF (0.43 g, 2.81 mmol), compound
(7) (1.23 g, 3.26 mmol) were dissolved in 5 ml of dry ethyl acetate
and it was slowly added to the reaction mixture under nitrogen at
50°C. It was stirred for 12 h. When the reaction was complete
250 ml DI water was added and allowed to stir for 2 h at room
temperature. Then it was extracted with 1 M HCl (200 ml × 3),
1 M NaHSO4 (200 ml × 3), 10% Na2CO3, saturated NaCl
(200 ml), and it was dried under anhydrous MgSO4. Ethyl
acetate was evaporated to give 3.15 g with a 91% yield. 1H
NMR (400 MHz, CDCl3) δ 5.19 (s, 4H), 4.31–4.19 (m, 8H),
4.02 (d, J � 2.4 Hz, 4H), 3.38 (q, J � 6.2 Hz, 8H), 3.33 (s, 2H),
2.55 (t, J � 5.9 Hz, 8H), 1.27 (s, 6H), 1.02 (s, 3H).

Synthesis Route of TRPZ-bisMPA
Synthesis of 3,4-dichloro-1-(prop-2-yn-1-yl)-1H-pyrrole-2,5-
dione (9): A total of 0.40 g of dichloromaleimide (2.40 mmol)
and 2-ethylhexylbromide (0.48 ml, 2.9 mmol) and DMF (10 ml)
in a 2-neck round bottom flask under nitrogen. The mixture was
vigorously stirred at 140°C for 24 h. After that, the solution was
quenched with 0.1 M HCl and extracted with diethyl ether. The
organic layer was dried over Na2SO4 and concentrated under
reduced pressure, and purification by silica gel column
chromatography (30% DCM/Hexane) resulted in a cream-
colored powder of N-(propargyl) dichloromaleimide (0.554 g,
90%). 1H NMR (400 MHz, CDCl3) δ 4.31–4.30(d), 2.23(s).

Synthesis of TRPZ-Propagyl (10): A mixture of 2-
aminothiophenol (0.386 g, 2.8 mmol) and N-(propargyl)
dichloromaleimide (0.30 g, 1.4 mmol) was dissolved in 24 ml
of acetic acid. The reaction mixture was refluxed under a
nitrogen atmosphere for 24 h. After being cooled to room
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temperature, the mixture was quenched with brine and extracted
with ethyl acetate. The organic layer was separated, dried over
anhydrous Na2SO4, and concentrated under reduced pressure.
The product was purified via flash column chromatography (30%
chloroform/hexane) and obtained as orange solid (0.18 g, 50%).
1H NMR (400 MHz, chloroform-d) 1H NMR (400 MHz, CDCl3)
δ 7.72 (d, J � 8.0 Hz, 2H), 7.34–7.26 (m, 4H), 7.18 (ddd, J � 8.3,
7.2, 1.4 Hz, 2H), 5.20 (s, 2H), 2.29 (t, J � 2.5 Hz, 1H). 13C NMR
(75 MHz, CDCl3) δ 148.79, 136.97, 130.48, 128.26, 127.11, 126.57,
111.17, 77.23, 73.36, 33.08. 1H–1H correlation spectroscopy
(COSY) spectrum is provided in the SI. HRMS (ESI/Q-TOF)
m/z: [M + H]+ Calcd for C19H11N3S2 345.0394; Found 345.0365
with an isotope pattern similar to the predicted pattern.

Synthesis of TRPZ-bisMPA-amine-BOC (11): This
procedure was modified from previously reported procedures
(Ihre et al., 1998). To the stirred solution of A-MPA-4-ala (0.60 g,
0.56 mmol), TRPZ-propagyl (0.29 g, 0.84 mmol) in 8 ml of DMF,
CuBr (322 mg, 2.21 mmol) was added under nitrogen flushing.
After complete addition, N,N,N′,N″,N″-
pentamethyldiethylenetriamine (PMDETA) (388 mg,
2.30 mmol) was added and allowed to stir under nitrogen at
55°C for 48 h. The reaction mixture was precipitated to 200 ml
diethyl ether. After settling, the diethyl ether layer was decanted,
and the remaining product was air-dried. This precipitation,
decanting, and the air-drying process was repeated twice more.
The crude product was dissolved in 100 ml of DCM. It was
extracted with 0.1 M EDTA solution. It was further purified using
size exclusion chromatography (Sephadex LH-20) to give 0.59 g
of TRPZ-bisMPA-amine-Boc with 74% yield. 1H NMR
(400 MHz, DMSO-d6) δ 8.03 (s, 1H), 7.51 (d, J � 7.9 Hz, 2H),
7.44 (d, J � 8.0 Hz, 2H), 7.32 (t, J � 7.6 Hz, 2H), 7.22 (t, J � 7.6 Hz,
2H), 6.77 (s, 4H), 5.32 (s, 2H), 4.41 (s, 2H), 4.16 (d, J � 11.9 Hz,
8H), 3.94 (s, 4H), 3.12 (d, J � 6.4 Hz, 8H), 2.41 (t, J � 7.4 Hz, 8H),
1.34 (s, 36H), 1.17 (d, J � 20.4 Hz, 6H), 0.84 (s, 3H). HRMS (ESI/
Q-TOF) m/z: [M + H]+ Calcd for C66H90N10O20S2 1407.5852;
Found 1407.5813 with an isotope pattern similar to the predicted
pattern.

Synthesis of TRPZ-bisMPA (12): TRPZ-bisMPA-amine-Boc
was dissolved in 5 ml of chloroform and 2 ml of trifluoroacetic
acid (TFA) was slowly added and stirred for 45 min. The reaction
mixture was air-dried and dissolved in 10 ml of chloroform. It
was added dropwise to 500 ml of diethyl ether and stirred for 2 h.
It was filtered, and the precipitation procedure was repeated three
times. Finally, the resulting solid was put under the vacuum for
24 h to give 0.39 g of the pure product with 93% yield. The
formation of the TRPZ-bisMPA was confirmed via the
disappearance of BOC groups (1.34 ppm). 1H NMR (400 MHz,
DMSO-d6) δ 8.07 (s, 1H), 7.53 (d, J � 7.8 Hz, 2H), 7.44 (d, J �
7.8 Hz, 2H), 7.33 (t, J � 7.7 Hz, 2H), 7.24 (t, J � 7.6 Hz, 2H), 5.33
(s, 2H), 4.42 (s, 2H), 4.22 (d, J � 11.5 Hz, 8H), 3.94 (s, 4H), 3.01 (q,
J � 6.2 Hz, 8H), 2.64 (d, J � 7.1 Hz, 8H), 1.17 (s, 6H), 0.85 (s, 3H).

Preparation and Characterization of
Nanoparticles
For the nanoprecipitation method (Chandrasiri et al., 2020),
100 μL tetrahydrofuran (THF) was used as the organic solvent

to dissolve 2 mg of TRPZ-bisMPA separate glass vial. The
solution was added dropwise to a separate vial of Milli-Q
water at pH 7.0 (2 ml) while gently stirring to obtain a 1 mg/
ml final concentration. THF was allowed to evaporate under a
stream of nitrogen. NP solutions were allowed to equilibrate for
12 h before further study.

TRPZ-127 NPs was prepared and modified according to the
previously reported procedure (Wu et al., 2017). First, TRPZ-PG
(2 mg) was dissolved under rapid sonication in THF (2 ml). Then,
a THF solution (1 ml) containing TRPZ-PG (1 mg/ml) and
Pluronic F-127 (5 mg/ml) was used to prepare TRPZ-127 NPs
by rapidly injecting the solution into deionized water (1 ml)
under continuous sonication using a bath sonicator. After
sonication for an additional 1 min, THF was evaporated under
a nitrogen atmosphere.

Aggregate sizes and ζ-potentials measurements were carried
out on a Malvern Instrument Zetasizer Nano ZS using a He–Ne
laser with a 633 nm wavelength, a detector angle of 173o at 25°C.
The size measurements were performed in triplicate for each
sample at 0.5 mg/ml concentration to ensure consistency. The
morphological study of the aggregates formed from the NPs was
carried out by TEM using a JEOL 1230 TEM operated at 100 kV
to collect the TEM images using a Gatan Orius 831 bottom
mounted CCD camera.

Absorption and Photoluminescence
Assessment
The absorption measurements were done on a Varian Cary-
5000 spectrometer (Dorval, QC, Canada). While the
fluorescence studies were performed on Horiba
Quantamaster fluorimeter with a xenon lamp and PMT
detector using glass cuvettes. Fluorescence quantum yields
were measured with samples of low sample concentration
(10–5 M) and excited close to their maximum absorption.
The spectroscopic energy gap (Eopt

g ) was calculated from the
onset of absorbance (Li et al., 2012).

Cell Viability, Treatment and Imaging
Human embryonic kidney (HEK293) cells were used for the
assay. HEK cells were grown under standard conditions (37°C, 5%
CO2, DMEMmedia with 10% FBS). Nanoparticles were added to
tissue culture media and allowed 24 h incubation period in
cytotoxicity studies. Cytotoxicity of the nanoparticles was
evaluated with a CyQUANT LDH Cytotoxicity Assay Kit
(Invitrogen) using a microplate reader (BioTek Synergy H1).
Following manufacturer protocols, both negative and positive
controls are used in the assay. Experimental values are
transformed based on two values: zero-cytotoxicity value
(background) and 100% cytotoxicity value (cells treated with
lysis buffer based on manufacturer protocol). Each experiment is
represented by relative values based on the control values.
Imaging of particle distribution in cells was done 30 min after
the addition of 10 μg/ml NPs to culture media. TRPZ
fluorescence in HEK cells was observed with a Leica Stellaris
STED confocal microscope using both conventional and
STED modes.
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RESULTS AND DISCUSSION

Design and Synthesis
TRPZ, first discovered by Dimroth and Reicheneder (1969),
possesses a simple yet fascinating molecular structure. Its pi-
framework and redox properties have made it beneficial in the
field of organic electronics. TRPZ, being planar in structure, can
undergo efficient crystalline packing via intermolecular
sulfur–sulfur interactions and hydrogen bonding between
pyrrole hydrogens and thiazine nitrogens (Hong et al., 2008;

Hong et al., 2009). The molecule has multiple reactive sites which
can be functionalized to increase its solubility and be further
developed using electron-withdrawing and electron-donating
groups to afford donor-acceptor oligomers with exceptional
optical properties.

Based on its unique properties, we aimed to expand the
application of this unique emissive building block towards
bioimaging. However, due to its hydrophobic nature, we
sought to modify TRPZ via N-substitution of the central
pyrrole to produce a self-assembling amphiphile. To induce

SCHEME 1 | Synthesis of dendron segment, A-MPA-4-ala; the synthesis wasmodified accordingly using previously reported procedures (Yaddehige et al., 2020).

SCHEME 2 | Synthesis route for TRPZ-bisMPA.
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amphiphilicity and promote self-assembly, bisMPA was selected
as the dendritic segment. A hydrophilic moiety, its synthetic
accessibility allows esterification under mild reaction conditions
and provides a level of biodegradability and biocompatibility
(Feliu et al., 2012). Additionally, it was capped with alanine to
afford a cationic surface to increase colloidal stability, cellular
uptake and better its water solubility (Gessner et al., 2002; Lipfert
et al., 2014; Dragoman et al., 2017). This amphiphilic property is
expected to make TRPZ capable of forming NPs independently,
TRPZ-bisMPA NPs.

The resulting NP morphology is anticipated to be that of a
micelle structure in which the dendron extends towards the
hydrophilic water surface protecting the hydrophobic TRPZ
portion within the core. The positively charged terminal ends
of the amphiphile would effectively stabilize the NPs via
electrostatic interactions.

In parallel, we compared NPs formed from TRPZ-bisMPA
with conventional nanostructures in which a surfactant
polymer is employed to encapsulate hydrophobic dyes. We
encapsulated TRPZ-PG into a water-soluble polymer
surfactant (Pluronic F-127), TRPZ-127 NPs. Although

frequently employed, the encapsulation strategy has
significant drawbacks (e.g., poor loading) that limit its
application. Often the nature of the molecule being
encapsulated has varying physiochemical properties that
contrast to the solubilizing block of the amphiphilic polymer
being employed. This, of course, leads to lower encapsulation
efficiencies and can destabilize the resulting nanostructure
(Jeong et al., 2020). By assessing the two NP systems,
TRPZ-bisMPA NPs and TRPZ-127 NPs, we aim to explore
the former as a versatile molecular bioimaging probe suitable
for numerous biomedical applications.

The synthesis of the dendron segment, A-MPA-4-ala (8), is
shown in Scheme 1, which consists of a seven-step synthetic
route. In the first step, the 1,3-diol moiety of bisMPA (1) was
protected to afford compound 2 by reaction of bisMPA with 2,2-
dimethoxypropane and a catalytic amount of p-toluenesulfonic
acid (TsOH) in dry acetone. In order to make the hydroxyl group
a better leaving group, compound 2 was reacted with
p-toluenesulfonyl chloride (TsCl) in pyridine to obtain
compound 3. The next step, the azido group, was substituted
using sodium azide (NaN3) and DMF to obtain compound 4. The

FIGURE 2 | TEM image of a TRPZ-bisMPA NPs (A) and TEM image of a TRPZ-127 NPs (B) in Milli-Q water from nanoprecipitation method. Additional images are
provided in the SI.

FIGURE 3 | Normalized absorbance and emission profiles for TRPZ-PG (A) in THF, TRPZ-127 NPs (B) and TRPZ-bisMPA NPs (C) in Milli-Q water.
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following step was carried out to deprotect dimethoxy moiety
using an anion exchange resin-Dowex to obtain compound 5.
Before proceeding to the next step, 2,2,5-trimethyl-1,3-dioxane-
5-carboxylic acid was synthesized using a similar method to
compound 2. Then, 2,2,5-trimethyl-1,3-dioxane-5-carboxylic
acid was employed in a Malkoch esterification (García-Gallego
et al., 2015) with compound 5, using 1,1′-carbonyldiimidazole
(CDI) to activate the carbonyl group and cesium fluoride (CsF) as
a catalyst to obtain compound 6. Dowex deprotection was done in
the next step to obtain compound 7. The final step was
esterification between beta-alanine and compound 7 to obtain
A-MPA-4-ala.

The synthesis of TRPZ-bisMPA (12) consists of four synthetic
steps (Scheme 2). First, dichloromaleimide was propargylated at
the nitrogen position to obtain compound 9. TRPZ-PG was
synthesized via a condensation method between 2-
aminothiophenol and N-(propargyl) dichloromaleimide
(compound 10). Then TRPZ-PG (10) and A-MPA-4-ala (8)
were reacted using click-chemistry to obtain TRPZ-bisMPA-
amine-Boc (compound 11). Finally, acid was used for
deprotection of the tert-butyl carbamates (BOC) protected
amine groups to afford a cationic terminated TRPZ-bisMPA
amphiphile (compound 12).

Self-Assembly and Nanoparticle Formation
The particle formation for TRPZ-bisMPA was done by
nanoprecipitation. The hydrodynamic diameter was analyzed
via dynamic light scattering (DLS) (Supplementary Figure
S8A). Supplementary Table S1 summarizes the sizes and
surface charges for the NPs formed. Nanoprecipitation affords
NPs with a spherical morphology possessing a hydrodynamic
diameter of 129.9 nm (±20). The polydispersity (PDI) for TRPZ-
bisMPA NPs indicated high uniformity with values around 0.2.
Figure 2A shows transmission electron microscopy (TEM)
images for TRPZ-bisMPA NPs. TEM images support DLS
data and provide direct evidence of NP formation with a
diameter of 155.1 nm (±16).

For comparison, TRPZ-PGwas encapsulated with Pluronic F-
127 (Mw � 12.6 kDa). It is not readily soluble in water unless
incorporated within a water-soluble surfactant. Pluronic F-127 is
known to self-assembly independently with sizes that are much
smaller than those observed in this study (<50 nm) (Domínguez-
Delgado et al., 2016). The DLS data indicates a larger NPs
assembly than that of TRPZ-bisMPA NPs. TRPZ-127 NPs
exhibit a hydrodynamic diameter of 323.5 nm (±97 nm)
(Supplementary Figure S8B) and PDI of 0.19. TEM images of
TRPZ-127 NPs show spherical assemblies with average

diameters of 181.5 nm (±66) (Figure 2B). The encapsulation
efficiency (EE%) of 38.5% and dye loading efficiency (DL%) of
7.1% are tabulated in the SI.

Surface properties of the NPs via ζ-potential values aid in
supporting the sizes obtained from DLS and TEM. The
ζ-potential, which depends on the surface charge, is essential
for the stability of NPs in suspension. Additionally, it is a critical
factor in regards to the function and toxicity of NPs specifically
for biological application. TRPZ-bisMPA NPs exhibit
ζ-potentials of 17.2 mV. The positive charge results from the
outer surface consisting of cationic amines. In contrast, TRPZ-
127 NPs show -0.5 mV of average surface charge, which is close
to neutral due to the lack of charge on the polymer surfactant
used. The positive surface charge on TRPZ-bisMPA NPs
corresponds to small and more stable aggregates (Kumar and
Dixit, 2017).

Photophysical Properties
The normalized absorption and emission spectra of TRPZ and its
NPs are shown in Figure 3 with additional photophysical data
tabulated in Table 1. In a comparison of TRPZ-PG fluorophore
with the two NP suspensions, TRPZ-PG shows two major
absorbance peaks at 447 and 478 nm in THF (Figure 3A).
The band at 447 nm can be assigned to the pi to pi* electronic
transition of the phenyl rings. Bands at 478 nm are assigned to the
n to pi* transitions. The calculated optical band gap of the TRPZ-
PG is 2.46 eV (onset: 504 nm). The emission maximum of the
fluorophore is at 678 nm with a Stokes shift of 0.76 eV (200 nm).
Note that the propargyl group does not contribute to the observed
photophysical properties via pi orbital overlap.

For the NPs, noticeable broadening and red-shifting
(2–16 nm) in the spectra suggest enhanced intermolecular
interactions due to aggregation in the NP core. TRPZ-127
NPs display three absorbance peaks at 452 nm, 480 nm, and
515 nm in water, as shown in normalized absorbance spectra
(Figure 3B). Compared to both TRPZ-PG and TRPZ-bisMPA
NPs, a peak shoulder at 515 nm is observed, presumably due to a
differing aggregation pattern within the particle. TRPZ-127 NPs
possess a weak emission and is blue-shifted towards 563 and
606 nm relative to TRPZ-PG.

Interestingly there is a contrast in optical properties between
the amphiphile and encapsulated TRPZ. TRPZ-bisMPA NPs
show absorbance peaks at 460 and 494 nm in water (Figure 3C).
Upon excitation, TRPZ-bisMPANPs exhibit a strong neon green
fluorescence with an emission band centered at 695 nm and a
Stokes shift of 0.72 eV (201 nm). The optical profile for TRPZ-
bisMPA NPs resembles that of “free” TRPZ-PG in THF, with a

TABLE 1 | Optical properties of the TR-PZ systems dye in THFa and NPs in waterb.

TR-PZ systems λabs
max

(nm)
Eg

opt (eV) λems
max

(nm)
Stokes shift
(nm, eV)

Φ (%) τ (ns)

TRPZ-PGa 447, 478 2.46 678 200 (0.76) 79 5.3
TRPZ-127 NPsb 452, 480, 515 2.48 563, 606 126 (0.54) <0.5 t1 � 0.8 (66.9%),t2 � 5.7 (33.1%)

83 (0.38)
TRPZ-bisMPA NPsb 460, 494 2.52 695 201 (0.72) 49 6.3
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20 nm red shift for the latter. This behavior is presumably due to
an aggregation behavior that is reminiscent of a monomeric form
(e.g., “free” or non-aggregated TRPZ-PG form) of the dye with
extended electron delocalization. The weaker emission of
TRPZ127 NPs relative to TRPZ-bisMPA NPs is supported by
a negative solvatochromism observed for TRPZ-PG
(Supplementary Figure S13). These results suggest that
TRPZ-PG possesses a nonpolar excited state and can form
high-energy aggregates (e.g., H-aggregates) that are not
dominant with the amphiphilic derivative.

The Stokes shifts observed for the molecules and NP
suspension are quite significant. Large Stokes shifts are
important when overcoming spectral overlapping to retain
good signal-to-noise ratios for bioimaging applications.
Additionally, a large Stokes shift can be indicative of a
number of photophysical causes such as intramolecular
charge transfer (ICT), (Yang et al., 2013), low
reorganization energy, (Chen et al., 2019), and exciplex
formation (Horváth et al., 2015). Among the
aforementioned reasons, the Stokes shifts observed for
TRPZ and its NPs are presumably due to the emission
facilitated by the proaromatic pyrrole trapped in the
quinoidal structure (Wu et al., 2010; Brogdon et al., 2016).
Computational calculations for TRPZ-bisMPA support this
notion where HOMO orbitals showed proaromatic molecular
orbitals (MOs) and an aromatic excited state (LUMO)
predominately at the pyrrole ring (Supplementary Figure
S10). Electron localization function (ELF) and localized-
orbital locator (LOL) analysis and profiles (Supplementary
Figure S11) were employed to further support our hypothesis
regarding proaromaticity. ELF has been widely used to
evaluate electron localization while LOL offers insight on
localized bonding features (Schmider and Becke, 2000;
Tsirelson and Stash, 2002). Using the ELF-pi analysis, the

aromatic rings display high electron delocalization where they
are clearly separated from those with localized bonding. As
expected, the ELF-pi values and analysis of bond orbitals
confirm aromaticity. Additionally, localization functions
show aromaticity following excitation which is a signature
of proaromaticity (Cocq et al., 2015).

Along with a large Stokes shift, TRPZ-bisMPA NPs possess a
high quantum yield (Φ) in water, Φ � 49%. Typically, the Φ for
conventional bioimaging dyes are much lower in water due to
unfavorable solvent-solute interactions, which induce non-
radiative pathways and quench emission (Lakowicz, 2006; Hong
et al., 2016). In this case, self-assembly of the amphiphile reduces
dye-water interactions and aids to maintain the optical properties
of a monomeric form of the dye (e.g., TRPZ-PG) (Zhegalova et al.,
2014). TRPZ-127 NPs show weaker emission and lowerΦ of 0.5%
in water, most likely due to a variation in the aggregation patterns
of TRPZ and the formation of H-aggregates inside the NP. TRPZ-
PG fluorophore displays a decent Φ in organic solvents (Φ � 79%
in THF). However, due to its poor solubility, comparison in
aqueous media was not achievable.

Experimental lifetime plots are shown in SI (Supplementary
Figures S14–S16). Fluorescent lifetime (τ) expresses the time
allocated by a fluorophore in the excited state before relaxing to
the ground state. Additionally, fluorescence lifetime
measurements are highly sensitive to the surrounding
environment (Boreham et al., 2016). TRPZ-PG in THF shows
a signal exponential component of 5.3 ns and TRPZ-bisMPA
NPs exhibits a lifetime of 6.3 ns. In contrast, TRPZ-127 NPs
shows a dual exponential lifetime: t1 of 0.8 ns and t2 of 5.7 ns. The
two exponentials are due to both the aggregated and monomeric
(e.g., non-aggregated) form being present inside the NP. When
compared with TRPZ-PG and the absence of a lower (t1) value,
the lifetime of 0.8 ns can be assigned to high-energy aggregates,
which in this case is the dominant form (66.9%).

FIGURE 4 | Cell viability and uptake of TRPZ nanoparticles (A) Percent cell viability after treatment with TRPZ-bisMPA NPs and TRPZ-127 NPs. Concentrations
tested listed below. No significant difference was seen between any condition as determined by Tukey ANOVA (B–G). Fluorescence microscopy of TRPZ-bisMPA NPs
(B–D) and TRPZ-127 NPs (E–G) localization after cell loading. Images were acquired by conventional confocal microscopy (B,E) or STED (D,G). Brightfield images were
overlaid with fluorescence imaging (C,F). Red arrow indicates a labeled lysosome.White triangle in TRPZ-127 NPs images shows nuclear membrane. Enlargement
located in the SI.
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Cellular Viability, Uptake, and Imaging
The impact of the NPs on cell viability was tested by LDH assay
(Figure 4A). Even at very high concentrations, a negligible effect
was seen on cell viability. Analysis by Tukey ANOVA found no
significant difference between conditions. In vivo testing will be
needed to further assess the effect of the NPs on physiology;
however, these results suggest our NPs will be well-tolerated in
biological environments.

Confocal microscopy found that both TRPZ-bisMPA NPs
and TRPZ-127 NPs accumulate most significantly in endosomes
(Figures 4B–G). The cationic surface charge of TRPZ-bisMPA
NPs leads to apparent cellular uptake via electrostatic interactions
with anionic cell membranes. Similar results have been observed
with other dendrimer-based NPs modified with anime groups
(Morris et al., 2017; Ray et al., 2018; Ingle et al., 2020). Likely
owing to the polar groups on the MPA dendron, TRPZ
fluorescence is observed throughout the interior of the
lysosome (Figure 4D).

TRPZ-127 NPs show not only accumulation in the lysosome
but also labeling of various cellular membranes, including nuclear
membranes (Figures 4E,F). Staining of the nuclear membrane
indicates that TRPZ fluorescence has spread throughout the
endomembrane system, trafficking all the way to the
endoplasmic reticulum (ER). Stimulated emission depletion
microscopy (STED) images of TRPZ-127 NPs and TRPZ-
bisMPA NPs aid in comparing cellular uptake where
fluorescence labeling is localized to the membrane of the
organelle and not the interior, as observed with TRPZ-
bisMPA NPs (Figures 4D,G; Supplementary Figure S17). It
appears that TRPZ-127 is much more aggressively loading into
cells; however, this is not the case. We speculate that the
encapsulated dye may have escaped its NPs and, due to its
hydrophobic nature, became embedded into membrane
interiors. The unloaded dye being hydrophobic actively
segregates into cells while TRPZ-bisMPA NPs remain intact
and localized in the lysosome.

CONCLUSION

In summary, a comparative analysis of two NP systems was
conducted. Evaluation via spectroscopic, light scattering and
microscopic techniques confirm colloidal stability and
provided insight on photophysical properties of the
molecular scaffold as a potential bioimaging agent. Cell

viability studies indicate low cytotoxicity of the materials
and their suitability for biological application. However,
cellular distribution of TRPZ originating from the two sets
of NPs suggests a fundamentally different interaction with
cells. Such results suggest that a variation in formulation could
be used for different fundamental applications. Overall the
approach described here opens up avenues towards developing
fluorescent NPs from a simple yet appealing scaffold to afford
materials with tuneable properties for bioimaging
applications.
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