6 research outputs found

    Baltic Sea coastal erosion; a case study from the Jastrzębia Góra region

    Get PDF
    The coastline in the Jastrzębia Góra area can be divided into three major zones of general importance: a beach and barrier section, a cliff section, and a section protected by a heavy hydrotechnical construction. These areas are characterised by a diverse geology and origin, and hence different vulnerability to erosion. In addition, observations have demonstrated a different pace of erosion within each zone. Based on the results obtained by remote sensing methods (analysis of aerial photographs and maps), it has been determined that the coastline in the barrier area, i.e., to the west of Jastrzębia Góra, moved landwards by about 130 m, in a period of 100 years, and 80 m over about 50 years. A smaller displacement of the shoreline could be observed within the cliff. Between the middle of the twentieth and the start of the twenty-first centuries the shore retreated by about 25 m. However, in recent years, an active landslide has led to the displacement of the uppermost part of the cliff locally up to 25 m. Another issue is, functioning since 2000, a heavy hydrotechnical construction which has been built in order to protect the most active part of the cliff. The construction is not stable and its western part, over a distance of 50 m, has moved almost 2 m vertically downwards and c. 2.5 m horizontally towards the sea in the past two years. This illustrates that the erosional factor does not comprise only marine abrasion, but also involves land-based processes determined by geology and hydrogeology. Changes in the shoreline at the beach and barrier part are constantly conditioned by rising sea levels, the slightly sloping profile of the sea floor and low elevation values of the backshore and dune areas. Cliffs are destroyed by mass wasting and repetitive storm surges that are responsible for the removal of the colluvium which protects the coast from adverse wave effects. Presumably, mass movements combined with groundwater outflow from the cliff, plus sea abrasion cause destabilisation of the cliff protection construction

    Development of the Vistula river mouth fan

    No full text

    Prussian geological maps of Northern Poland in the archives of the Polish Geological Institute and their current application in geology

    No full text
    The article characterizes first general geological (lithological-stratigraphical) maps presenting Quaternary deposits in Northern Poland. These were the maps of territory of the Prussian partition, elaborated by German geologists from Prussian Geological Survey “Königlich Preussische Geologische Landesanstalt”. After Poland regained its independence they became a basis for many Polish geological publications. The article discusses the chronology and objectives of the main cartographic works of German geologists operating in the area of present-day Northern Poland (general and detailed geological maps) and briefly presents the methodology of geological mapping of lowlands at the scale of 1:25,000

    Baltic Sea coastal erosion; a case study from the Jastrzębia Góra region

    No full text
    The coastline in the Jastrzębia Góra area can be divided into three major zones of general importance: a beach and barrier section, a cliff section, and a section protected by a heavy hydrotechnical construction. These areas are characterised by a diverse geology and origin, and hence different vulnerability to erosion. In addition, observations have demonstrated a different pace of erosion within each zone. Based on the results obtained by remote sensing methods (analysis of aerial photographs and maps), it has been determined that the coastline in the barrier area, i.e., to the west of Jastrzębia Góra, moved landwards by about 130 m, in a period of 100 years, and 80 m over about 50 years. A smaller displacement of the shoreline could be observed within the cliff. Between the middle of the twentieth and the start of the twenty-first centuries the shore retreated by about 25 m. However, in recent years, an active landslide has led to the displacement of the uppermost part of the cliff locally up to 25 m. Another issue is, functioning since 2000, a heavy hydrotechnical construction which has been built in order to protect the most active part of the cliff. The construction is not stable and its western part, over a distance of 50 m, has moved almost 2 m vertically downwards and c. 2.5 m horizontally towards the sea in the past two years. This illustrates that the erosional factor does not comprise only marine abrasion, but also involves land-based processes determined by geology and hydrogeology. Changes in the shoreline at the beach and barrier part are constantly conditioned by rising sea levels, the slightly sloping profile of the sea floor and low elevation values of the backshore and dune areas. Cliffs are destroyed by mass wasting and repetitive storm surges that are responsible for the removal of the colluvium which protects the coast from adverse wave effects. Presumably, mass movements combined with groundwater outflow from the cliff, plus sea abrasion cause destabilisation of the cliff protection construction

    Fe-Mn nodules from the Polish sector of the Baltic Sea : state of knowledge and need for research

    No full text
    Studies on Baltic nodules have been undertaken since the1920s. In the 1970sand 1980s, the Polish Geological Institute - National Research Institute conducted researches on the bottom sediments of the Baltic Sea, which allowed identifying the regions of occurrence of Fe-Mn nodules in the southern part of the Baltic Sea (Mojski, 1989-1994). Nodules from the Polish Baltic Sea Zone are the least studied element of the marine environment. So far, there is a lack of information on environmental-geological conditions of formation and occurrence of nodules, their metal resources and deposit potential. The Fe-Mn nodules may be a valuable source of information on the contamination of the Baltic Sea water and bottom sediments. In cooperation between the Institute of Oceanography of the University ofGdañsk and the Polish Geological Institute-NRI, two research cruises were carried out in August and September 2020 on a 5 X 5 km testing ground in the Gotland-Gdańsk Threshold region. The seabed surface was profiled using multibeam echo sounders and a side-scan sonar. A hundred samples of Fe-Mn nodules, 25 samples of surface sediments associated with the nodules, and25 samples of clay rocks underlain by marine sediments were collected. The extensive documentary material will enable, for the first time, to estimate the nodule resources and determine the regularity of their occurrence

    Chronology of the last ice sheet decay on the southern Baltic area based on dating of glaciofluvial and ice-dammed lake deposits

    No full text
    The paper presents the results of the first OSL dating of glaciofluvial and ice-marginal lake sediments which occur between end moraines of the Słupsk Bank and the Polish coast. The sand and gravel of glaciofluvial deltas on the Słupsk Bank were deposited most likely during a period from 14.3 ±1.2 to 16.6 ±1.4 ka ago. The deposition of silty-sandy sediments of the ice-marginal lake is dated at 14.51 ±0.81 and 14.6 ±1.4 ka years. Likewise, dates ranging from 13.74 ±0.84 to 16.70 ±1.1 ka obtained from low sandy ridges, related to the southern range of the ice-marginal lake in the Gardno-Łeba Lowland, indicate the most likely timing of their deposition. It can be concluded that a short stop of the ice sheet on the Słupsk Bank took place approximately 15.2 ka ago, which could be correlated with the position of the ice sheet front in central Skåne and in northern Lithuania at that time. Older and younger results were also obtained, except the dates mentioned above. The older ages show little sunlight exposure of sediments during their deposition. The younger dates indicate a marine origin of the sediments and show that some parts of glaciofluvial sediments were redeposited and exposed to sunlight at a later stage, most probably when dead-ice blocks were melting
    corecore