403 research outputs found

    On the possibility of spontaneous currents in mesoscopie systems

    Get PDF
    It is shown that a mesoscopic metallic system can exhibit a phase transition to a low temperature state with a spontaneous orbital current if it is sufficiently free of elastic defect scattering. The interaction among the electrons, which is the reason of the phase transition, is of the magnetic origin and it leads to an ordered state of the orbital magnetic moments

    Manipulating nonequilibrium magnetism through superconductors

    Full text link
    Electrostatic control of the magnetization of a normal mesoscopic conductor is analyzed in a hybrid superconductor-normal-superconductor system. This effect stems from the interplay between the non-equilibrium condition in the normal region and the Zeeman splitting of the quasiparticle density of states of the superconductor subjected to a static in-plane magnetic field. Unexpected spin-dependent effects such as magnetization suppression, diamagnetic-like response of the susceptibility as well as spin-polarized current generation are the most remarkable features presented. The impact of scattering events is evaluated and let us show that this effect is compatible with realistic material properties and fabrication techniques.Comment: 5 pages, 4 figure

    Comment on "Experimental determination of superconducting parameters for the intermetallic perovskite superconductor MgCNi3_3"

    Full text link
    In a recent paper (Phys. Rev. {\bf B 67}, 094502 (2003)) Mao et al. investigated the bias-dependent conductance of mechanical junctions between superconducting MgCNi3_3 and a sharp W tip. They interpreted their results in terms of 'single-particle tunneling'. We show it is more likely that current transport through those junctions is determined by thermal effects due to the huge normal-state resistivity of MgCNi3_3. Therefore no conclusion can be drawn about the possible unconventional pairing or strong-coupling superconductivity in MgCNi3_3.Comment: 2 pages, 1 Fig. Comment on Z. Q. Mao et al. (Phys. Rev. {\bf B 67}, 094502 (2003)

    Current-Carrying Ground States in Mesoscopic and Macroscopic Systems

    Full text link
    We extend a theorem of Bloch, which concerns the net orbital current carried by an interacting electron system in equilibrium, to include mesoscopic effects. We obtain a rigorous upper bound to the allowed ground-state current in a ring or disc, for an interacting electron system in the presence of static but otherwise arbitrary electric and magnetic fields. We also investigate the effects of spin-orbit and current-current interactions on the upper bound. Current-current interactions, caused by the magnetic field produced at a point r by a moving electron at r, are found to reduce the upper bound by an amount that is determined by the self-inductance of the system. A solvable model of an electron system that includes current-current interactions is shown to realize our upper bound, and the upper bound is compared with measurements of the persistent current in a single ring.Comment: 7 pager, Revtex, 1 figure available from [email protected]

    Thermal expansion, heat capacity and magnetostriction of RAl3_3 (R = Tm, Yb, Lu) single crystals

    Full text link
    We present thermal expansion and longitudinal magnetostriction data for cubic RAl3 (R = Tm, Yb, Lu) single crystals. The thermal expansion coefficient for YbAl3 is consistent with an intermediate valence of the Yb ion, whereas the data for TmAl3 show crystal electric field contributions and have strong magnetic field dependencies. de Haas-van Alphen-like oscillations were observed in the magnetostriction data of YbAl3 and LuAl3, several new extreme orbits were measured and their effective masses were estimated. Zero and 140 kOe specific heat data taken on both LuAl3 and TmAl3 for T < 200 K allow for the determination of a CEF splitting scheme for TmAl3

    The Preparation Temperature Influences the Physicochemical Nature and Activity of Nanoceria

    Get PDF
    Cerium oxide nanoparticles, so-called nanoceria, are engineered nanomaterials prepared by many methods that result in products with varying physicochemical properties and applications. Those used industrially are often calcined, an example is NM-212. Other nanoceria have beneficial pharmaceutical properties and are often prepared by solvothermal synthesis. Solvothermally synthesized nanoceria dissolve in acidic environments, accelerated by carboxylic acids. NM-212 dissolution has been reported to be minimal. To gain insight into the role of high-temperature exposure on nanoceria dissolution, product susceptibility to carboxylic acid-accelerated dissolution, and its effect on biological and catalytic properties of nanoceria, the dissolution of NM-212, a solvothermally synthesized nanoceria material, and a calcined form of the solvothermally synthesized nanoceria material (ca. 40, 4, and 40 nm diameter, respectively) was investigated. Two dissolution methods were employed. Dissolution of NM-212 and the calcined nanoceria was much slower than that of the non-calcined form. The decreased solubility was attributed to an increased amount of surface Ce4+ species induced by the high temperature. Carboxylic acids doubled the very low dissolution rate of NM-212. Nanoceria dissolution releases Ce3+ ions, which, with phosphate, form insoluble cerium phosphate in vivo. The addition of immobilized phosphates did not accelerate nanoceria dissolution, suggesting that the Ce3+ ion release during nanoceria dissolution was phosphate-independent. Smaller particles resulting from partial nanoceria dissolution led to less cellular protein carbonyl formation, attributed to an increased amount of surface Ce3+ species. Surface reactivity was greater for the solvothermally synthesized nanoceria, which had more Ce3+ species at the surface. The results show that temperature treatment of nanoceria can produce significant differences in solubility and surface cerium valence, which affect the biological and catalytic properties of nanoceria

    Possibility of long-range order in clean mesoscopic cylinders

    Full text link
    A microscopic Hamiltonian of the magnetostatic interaction is discussed. This long-range interaction can play an important role in mesoscopic systems leading to an ordered ground state. The self-consistent mean field approximation of the magnetostatic interaction is performed to give an effective Hamiltonian from which the spontaneous, self-sustaining currents can be obtained. To go beyond the mean field approximation the mean square fluctuation of the total momentum is calculated and its influence on self-sustaining currents in mesoscopic cylinders with quasi-1D and quasi-2D conduction is considered. Then, by the use of the microscopic Hamiltonian of the magnetostatic interaction for a set of stacked rings, the problem of long-range order is discussed. The temperature T∗T^{*} below which the system is in an ordered state is determined.Comment: 14 pages, REVTeX, 5 figures, in print in Phys. Rev.
    • …
    corecore