570 research outputs found

    Born-Infeld type Gravity

    Full text link
    Generalizations of gravitational Born-Infeld type lagrangians are investigated. Phenomenological constraints (reduction to Einstein-Hilbert action for small curvature, spin two ghost freedom and absence of Coulomb like Schwarschild singularity) select one effective lagrangian whose dynamics is dictated by the tensors g_{\mu\nu} and R_{\mu\nu\rho\sigma}(not R_{\mu\nu} or the scalar R).Comment: 7 pages, 3 figures, revte

    No-go theorem for bimetric gravity with positive and negative mass

    Full text link
    We argue that the most conservative geometric extension of Einstein gravity describing both positive and negative mass sources and observers is bimetric gravity and contains two copies of standard model matter which interact only gravitationally. Matter fields related to one of the metrics then appear dark from the point of view of an observer defined by the other metric, and so may provide a potential explanation for the dark universe. In this framework we consider the most general form of linearized field equations compatible with physically and mathematically well-motivated assumptions. Using gauge-invariant linear perturbation theory, we prove a no-go theorem ruling out all bimetric gravity theories that, in the Newtonian limit, lead to precisely opposite forces on positive and negative test masses.Comment: 19 pages, no figures, journal versio

    Multimetric extension of the PPN formalism: experimental consistency of repulsive gravity

    Full text link
    Recently we discussed a multimetric gravity theory containing several copies of standard model matter each of which couples to its own metric tensor. This construction contained dark matter sectors interacting repulsively with the visible matter sector, and was shown to lead to cosmological late-time acceleration. In order to test the theory with high-precision experiments within the solar system we here construct a simple extension of the parametrized post-Newtonian (PPN) formalism for multimetric gravitational backgrounds. We show that a simplified version of this extended formalism allows the computation of a subset of the PPN parameters from the linearized field equations. Applying the simplified formalism we find that the PPN parameters of our theory do not agree with the observed values, but we are able to improve the theory so that it becomes consistent with experiments of post-Newtonian gravity and still features its promising cosmological properties.Comment: 19 pages, no figures, journal versio

    Eddington-Born-Infeld action for dark energy and dark matter

    Full text link
    We argue that Einstein gravity coupled to a Born-Infeld theory provides an attractive candidate to represent dark matter and dark energy. For cosmological models, the Born-Infeld field has an equation of state which interpolates between matter, w=0 (small times), and a cosmological constant w=-1 (large times). On galactic scales, the Born-Infeld field predicts asymptotically flat rotation curves.Comment: A sign mistake in section on galactic scales is pointed out. This sign invalidates the content of that section. See comment on manuscrip

    Cosmology as Geodesic Motion

    Full text link
    For gravity coupled to N scalar fields with arbitrary potential V, it is shown that all flat (homogeneous and isotropic) cosmologies correspond to geodesics in an (N+1)-dimensional `augmented' target space of Lorentzian signature (1,N), timelike if V>0, null if V=0 and spacelike if V<0. Accelerating cosmologies correspond to timelike geodesics that lie within an `acceleration subcone' of the `lightcone'. Non-flat (k=-1,+1) cosmologies are shown to evolve as projections of geodesic motion in a space of dimension (N+2), of signature (1,N+1) for k=-1 and signature (2,N) for k=+1. This formalism is illustrated by cosmological solutions of models with an exponential potential, which are comprehensively analysed; the late-time behviour for other potentials of current interest is deduced by comparison.Comment: 26 pages, 2 figures, journal version with additional reference

    Shortcuts to Spherically Symmetric Solutions: A Cautionary Note

    Get PDF
    Spherically symmetric solutions of generic gravitational models are optimally, and legitimately, obtained by expressing the action in terms of the two surviving metric components. This shortcut is not to be overdone, however: a one-function ansatz invalidates it, as illustrated by the incorrect solutions of [1].Comment: 2 pages. Amplified derivation, accepted for publication in Class Quant Gra

    On Dual Formulation of Gravity

    Full text link
    In this paper we consider a possibility to construct dual formulation of gravity where the main dynamical field is the Lorentz connection \omega_\mu^{ab} and not that of tetrad e_\mu^a or metric g_\mu\nu. Our approach is based on the usual dualization procedure which uses first order parent Lagrangians but in (Anti) de Sitter space and not in the flat Minkowski one. It turns out that in d=3 dimensions such dual formulation is related with the so called exotic parity-violating interactions for massless spin-2 particles.Comment: 7 pages, plain LaTe

    Radiation-dominated area metric cosmology

    Full text link
    We provide further crucial support for a refined, area metric structure of spacetime. Based on the solution of conceptual issues, such as the consistent coupling of fermions and the covariant identification of radiation fields on area metric backgrounds, we show that the radiation-dominated epoch of area metric cosmology is equivalent to that epoch in standard Einstein cosmology. This ensures, in particular, successful nucleosynthesis. This surprising result complements the previously derived prediction of a small late-time acceleration of an area metric universe.Comment: 23 pages, no figures; references adde
    • …
    corecore