22 research outputs found

    Comparison of Machine Learning Algorithms for Predictive Modeling of Beef Attributes Using Rapid Evaporative Ionization Mass Spectrometry (REIMS) Data

    Get PDF
    Ambient mass spectrometry is an analytical approach that enables ionization of molecules under open-air conditions with no sample preparation and very fast sampling times. Rapid evaporative ionization mass spectrometry (REIMS) is a relatively new type of ambient mass spectrometry that has demonstrated applications in both human health and food science. Here, we present an evaluation of REIMS as a tool to generate molecular scale information as an objective measure for the assessment of beef quality attributes. Eight different machine learning algorithms were compared to generate predictive models using REIMS data to classify beef quality attributes based on the United States Department of Agriculture (USDA) quality grade, production background, breed type and muscle tenderness. The results revealed that the optimal machine learning algorithm, as assessed by predictive accuracy, was different depending on the classification problem, suggesting that a “one size fits all” approach to developing predictive models from REIMS data is not appropriate. The highest performing models for each classification achieved prediction accuracies between 81.5–99%, indicating the potential of the approach to complement current methods for classifying quality attributes in beef

    Metaphylactic antimicrobial effects on occurrences of antimicrobial resistance in \u3ci\u3eSalmonella enterica, Escherichia coli\u3c/i\u3e and \u3ci\u3eEnterococcus\u3c/i\u3e spp. measured longitudinally from feedlot arrival to harvest in high-risk beef cattle

    Get PDF
    Aims: Our objective was to determine how injectable antimicrobials affected populations of Salmonella enterica, Escherichia coli and Enterococcus spp. in feedlot cattle. Methods and Results: Two arrival date blocks of high-risk crossbred beef cattle (n = 249; mean BW = 244 kg) were randomly assigned one of four antimicrobial treatments administered on day 0: sterile saline control (CON), tulathromycin (TUL), ceftiofur (CEF) or florfenicol (FLR). Faecal samples were collected on days 0, 28, 56, 112, 182 and study end (day 252 for block 1 and day 242 for block 2). Hide swabs and subiliac lymph nodes were collected the day before and the day of harvest. Samples were cultured for antimicrobial-resistant Salmonella, Escherichia coli and Enterococcus spp. The effect of treatment varied by day across all targeted bacterial populations (p ≤ 0.01) except total E. coli. Total E. coli counts were greatest on days 112, 182 and study end (p ≤ 0.01). Tulathromycin resulted in greater counts and prevalence of Salmonella from faeces than CON at study end (p ≤ 0.01). Tulathromycin and CEF yielded greater Salmonella hide prevalence and greater counts of 128ERYR E. coli at study end than CON (p ≤ 0.01). No faecal Salmonella resistant to tetracyclines or third-generation cephalosporins were detected. Ceftiofur was associated with greater counts of 8ERYR Enterococcus spp. at study end (p ≤ 0.03). By the day before harvest, antimicrobial use did not increase prevalence or counts for all other bacterial populations compared with CON (p ≥ 0.13). Conclusions: Antimicrobial resistance (AMR) in feedlot cattle is not caused solely by using a metaphylactic antimicrobial on arrival, but more likely a multitude of environmental and management factors

    Descriptive Sensory Attributes and Volatile Flavor Compounds of Plant-Based Meat Alternatives and Ground Beef

    No full text
    The objective of this study was to characterize descriptive sensory attributes and volatile compounds among ground beef (GB) and plant-based meat alternatives (PBMA). The Beyond Burger, Impossible Burger, a third brand of PBMA, regular GB, and lean GB were collected from local and national chain grocery stores. Patties were formed and cooked on an enamel-lined cast iron skillet to an internal temperature of 71 °C. A trained descriptive sensory panel evaluated patties for 17 flavor attributes and 4 texture attributes. Volatile compounds were extracted using solid phase microextraction and analyzed via gas chromatography-mass spectrometry. Distinct differences in sensory and volatile profiles were elucidated (p < 0.05). PBMA possessed decreased beef flavor intensity and increased umami, nutty, smokey-charcoal, and musty/earthy flavor compared to GB. Sensory differences corresponded with pyrazine, furan, ketone, alcohol, and aldehyde concentration differences between products. These data support the conclusion that ground beef and PBMA possess different flavor and texture characteristics. Furthermore, the flavor of PBMA varied among available retail brands

    Broad and Inconsistent Muscle Food Classification Is Problematic for Dietary Guidance in the U.S.

    No full text
    Dietary recommendations regarding consumption of muscle foods, such as red meat, processed meat, poultry or fish, largely rely on current dietary intake assessment methods. This narrative review summarizes how U.S. intake values for various types of muscle foods are grouped and estimated via methods that include: (1) food frequency questionnaires; (2) food disappearance data from the U.S. Department of Agriculture Economic Research Service; and (3) dietary recall information from the National Health and Nutrition Examination Survey data. These reported methods inconsistently classify muscle foods into groups, such as those previously listed, which creates discrepancies in estimated intakes. Researchers who classify muscle foods into these groups do not consistently considered nutrient content, in turn leading to implications of scientific conclusions and dietary recommendations. Consequentially, these factors demonstrate a need for a more universal muscle food classification system. Further specification to this system would improve accuracy and precision in which researchers can classify muscle foods in nutrition research. Future multidisciplinary collaboration is needed to develop a new classification system via systematic review protocol of current literature

    A Research Communication Brief: Gluten Analysis in Beef Samples Collected Using a Rigorous, Nationally Representative Sampling Protocol Confirms That Grain-Finished Beef Is Naturally Gluten-Free

    No full text
    Knowing whether or not a food contains gluten is vital for the growing number of individuals with celiac disease and non-celiac gluten sensitivity. Questions have recently been raised about whether beef from conventionally-raised, grain-finished cattle may contain gluten. To date, basic principles of ruminant digestion have been cited in support of the prevailing expert opinion that beef is inherently gluten-free. For this study, gluten analysis was conducted in beef samples collected using a rigorous nationally representative sampling protocol to determine whether gluten was present. The findings of our research uphold the understanding of the principles of gluten digestion in beef cattle and corroborate recommendations that recognize beef as a naturally gluten-free food

    Use of Metagenomic Shotgun Sequencing Technology To Detect Foodborne Pathogens within the Microbiome of the Beef Production Chain

    No full text
    Foodborne illnesses associated with pathogenic bacteria are a global public health and economic challenge. The diversity of microorganisms (pathogenic and nonpathogenic) that exists within the food and meat industries complicates efforts to understand pathogen ecology. Further, little is known about the interaction of pathogens within the microbiome throughout the meat production chain. Here, a metagenomic approach and shotgun sequencing technology were used as tools to detect pathogenic bacteria in environmental samples collected from the same groups of cattle at different longitudinal processing steps of the beef production chain: cattle entry to feedlot, exit from feedlot, cattle transport trucks, abattoir holding pens, and the end of the fabrication system. The log read counts classified as pathogens per million reads for Salmonella enterica, Listeria monocytogenes, Escherichia coli, Staphylococcus aureus, Clostridium spp. (C. botulinum and C. perfringens), and Campylobacter spp. (C. jejuni, C. coli, and C. fetus) decreased over subsequential processing steps. Furthermore, the normalized read counts for S. enterica, E. coli, and C. botulinum were greater in the final product than at the feedlots, indicating that the proportion of these bacteria increased (the effect on absolute numbers was unknown) within the remaining microbiome. From an ecological perspective, data indicated that shotgun metagenomics can be used to evaluate not only the microbiome but also shifts in pathogen populations during beef production. Nonetheless, there were several challenges in this analysis approach, one of the main ones being the identification of the specific pathogen from which the sequence reads originated, which makes this approach impractical for use in pathogen identification for regulatory and confirmation purposes
    corecore