732 research outputs found

    In-situ multicore fibre-based pH mapping through obstacles in integrated microfluidic devices

    Full text link
    Microfluidic systems with integrated sensors are ideal platforms to study and emulate processes such as complex multiphase flow and reactive transport in porous media, numerical modeling of bulk systems in medicine, and in engineering. Existing commercial optical fibre sensing systems used in integrated microfluidic devices are based on single-core fibres, limiting the spatial resolution in parameter measurements in such application scenarios. Here, we propose a multicore fibre-based pH system for in-situ pH mapping with tens of micrometer spatial resolution in microfluidic devices. The demonstration uses custom laser-manufactured glass microfluidic devices (called further micromodels) consisting of two round ports. The micromodels comprise two lintels for the injection of various pH buffers and an outlet. The two-port system facilitates the injection of various pH solutions using independent pressure pumps. The multicore fibre imaging system provides spatial information about the pH environment from the intensity distribution of fluorescence emission from the sensor attached to the fibre end facet, making use of the cores in the fibre as independent measurement channels. As a proof-of-concept, we performed pH measurements in micromodels through obstacles (glass and rock beads), showing that the particle features can be clearly distinguishable from the intensity distribution from the fibre sensor.Comment: 12 pages of main draft with 10 figures, 2 pages of supplementary information with 3 figures. Total 14 page

    Formation of Centauro and Strangelets in Nucleus-Nucleus Collisions at the LHC and their Identification by the ALICE Experiment

    Get PDF
    We present a phenomenological model which describes the formation of a Centauro fireball in nucleus-nucleus interactions in the upper atmosphere and at the LHC, and its decay to non-strange baryons and Strangelets. We describe the CASTOR detector for the ALICE experiment at the LHC. CASTOR will probe, in an event-by-event mode, the very forward, baryon-rich phase space 5.6 < \eta < 7.2 in 5.5 A TeV central Pb + Pb collisions. We present results of simulations for the response of the CASTOR calorimeter, and in particular to the traversal of Strangelets.Comment: 4 pages, 4 figures, to appear in the proceedings of the 26th ICR

    High-accuracy numerical models of Brownian thermal noise in thin mirror coatings

    Get PDF
    Brownian coating thermal noise in detector test masses is limiting the sensitivity of current gravitational-wave detectors on Earth. Therefore, accurate numerical models can inform the ongoing effort to minimize Brownian coating thermal noise in current and future gravitational-wave detectors. Such numerical models typically require significant computational resources and time, and often involve closed-source commercial codes. In contrast, open-source codes give complete visibility and control of the simulated physics and enable direct assessment of the numerical accuracy. In this article, we use the open-source SpECTRE numerical-relativity code and adopt a novel discontinuous Galerkin numerical method to model Brownian coating thermal noise. We demonstrate that SpECTRE achieves significantly higher accuracy than a previous approach at a fraction of the computational cost. Furthermore, we numerically model Brownian coating thermal noise in multiple sub-wavelength crystalline coating layers for the first time. Our new numerical method has the potential to enable fast exploration of realistic mirror configurations, and hence to guide the search for optimal mirror geometries, beam shapes and coating materials for gravitational-wave detectors

    A relaxation function encompassing the stretched exponential and the compressed hyperbola

    Full text link
    A simple relaxation function I(t/tauzero; alpha, beta) unifying the stretched exponential with the compressed hyperbola is obtained, and its properties studied. The scaling parameter tauzero has dimensions of time, whereas the shape-determining parameters alpha and beta are dimensionless, both taking values between 0 and 1. For short times, the relaxation function is always exponential, with time constant tauzero. For small values of alpha, the function is close to exponential for all times, irrespective of beta. The function is also close to an exponential when beta is near unity, irrespective of alpha. For large values of alpha and long times, the function is close to a stretched exponential, provided that beta>0. The compressed hyperbola is recovered for beta=0.Comment: 17 pages, 4 figure

    CASTOR detector: model, objectives and simulated performance

    Get PDF
    We present a phenomenological model describing the formation and evolution of a Centauro fireball in the baryon-rich region in nucleus-nucleus interactions in the upper atmosphere and at the LHC. The small particle multiplicity and imbalance of electromagnetic and hadronic content characterizing a Centauro event and also the strongly penetrating particles (assumed to be strangelets) frequently accompanying them can be naturally explained. We describe the CASTOR calorimeter, a subdetector of the ALICE experiment dedicated to the search for Centauro in the very forward, baryon-rich region of central Pb+Pb collisions at the LHC. The basic characteristics and simulated performance of the calorimeter are presented
    corecore