11 research outputs found

    Observations of Extreme Wildfire Enhancements of CH3OH, HCOOH, and PAN over the Canadian High Arctic

    Full text link
    Wildfires are a common occurrence in many parts of the globe and can emit significant quantities of trace gases and particulate matter, negatively impacting air quality on large spatial scales. Among the various trace gases emitted by wildfires are volatile organic compounds (VOCs). Three VOCs that are of particular importance are methanol (CH3OH), formic acid (HCOOH), and peroxyacetyl nitrate (PAN). CH3OH is the one of the most abundant VOCs in the atmosphere, and it influences the budgets of many tropospheric species including the hydroxyl radical, carbon monoxide, formaldehyde, and ozone. HCOOH is the most abundant tropospheric carboxylic acid, and thus can have significant impacts on atmospheric acidity, particularly in remote regions such as the Arctic. Lastly, PAN is a key, thermally unstable reservoir species of tropospheric nitrogen radicals (NOx = NO + NO2), controlling the production of tropospheric ozone, and contributing to the ‘Arctic haze’ pollution phenomenon at high latitudes.During August 2017, two independent large-scale wildfires in British Columbia and the Northwest Territories of Canada generated vast smoke plumes that merged and were subsequently transported to the high Arctic. Simultaneous observations by a high-resolution ground-based Fourier transform infrared (FTIR) spectrometer at the Polar Environment Research Laboratory (PEARL) in Eureka, Nunavut (80.05°N, 86.42°W), and the Infrared Atmospheric Sounding Interferometer (IASI) satellite instruments display extreme enhancements in these three species relative to background concentrations during the fire-affected period in late August 2017, demonstrating the long-range transport and secondary formation of these typically short-lived species. Initial results of the analysis of this unique biomass burning event will be presented, including comparisons of observations with the GEOS-Chem global chemical transport model.info:eu-repo/semantics/nonPublishe

    Validation of methane and carbon monoxide from Sentinel-5 Precursor using TCCON and NDACC-IRWG stations

    Get PDF
    The Sentinel-5 Precursor (S5P) mission with the TROPOspheric Monitoring Instrument (TROPOMI) on board has been measuring solar radiation backscattered by the Earth\u27s atmosphere and surface since its launch on 13 October 2017. In this paper, we present for the first time the S5P operational methane (CH4) and carbon monoxide (CO) products\u27 validation results covering a period of about 3 years using global Total Carbon Column Observing Network (TCCON) and Infrared Working Group of the Network for the Detection of Atmospheric Composition Change (NDACC-IRWG) network data, accounting for a priori alignment and smoothing uncertainties in the validation, and testing the sensitivity of validation results towards the application of advanced co-location criteria. We found that the S5P standard and bias-corrected CH4 data over land surface for the recommended quality filtering fulfil the mission requirements. The systematic difference of the bias-corrected total column-averaged dry air mole fraction of methane (XCH4) data with respect to TCCON data is −0.26±0.56 % in comparison to −0.68±0.74 % for the standard XCH4 data, with a correlation of 0.6 for most stations. The bias shows a seasonal dependence. We found that the S5P CO data over all surfaces for the recommended quality filtering generally fulfil the missions requirements, with a few exceptions, which are mostly due to co-location mismatches and limited availability of data. The systematic difference between the S5P total column-averaged dry air mole fraction of carbon monoxide (XCO) and the TCCON data is on average 9.22±3.45 % (standard TCCON XCO) and 2.45±3.38 % (unscaled TCCON XCO). We found that the systematic difference between the S5P CO column and NDACC CO column (excluding two outlier stations) is on average 6.5±3.54 %. We found a correlation of above 0.9 for most TCCON and NDACC stations. The study shows the high quality of S5P CH4 and CO data by validating the products against reference global TCCON and NDACC stations covering a wide range of latitudinal bands, atmospheric conditions and surface conditions

    Exceptional Wildfire Enhancements of PAN, C2H4 ,CH3OH, and HCOOH Over the Canadian High Arctic During August 2017

    No full text
    Abstract Extreme enhancements in the total columns of carbon monoxide (CO), peroxyacetyl nitrate (PAN), ethylene (C2H4 ), methanol (CH3 OH), and formic acid (HCOOH) were observed over the Canadian high Arctic during the period of 17–22 August 2017 by a ground‐based Fourier transform infrared (FTIR) spectrometer at Eureka, Nunavut (80.05°N, 86.42°W), and by the Infrared Atmospheric Sounding Interferometer (IASI) satellite instruments. These enhancements have been attributed to wildfires in British Columbia (BC) and the Northwest Territories (NWT) of Canada, and represent the largest short‐term perturbations of PAN, C2H4, and HCOOH above ambient concentrations over the 14‐year (2006–2020) Eureka time‐series. Enhancement ratios, emission ratios, and emission factors relative to CO were calculated for all species for both FTIR and IASI observations. The C2H4 and HCOOH emission factors are significantly larger than previous studies, suggesting unusually high emissions from these fires. The wildfire plumes were also simulated using the GEOS‐Chem model. Initial GEOS‐Chem simulations displayed a severe under‐estimation relative to observations for these fire plumes resulting from the injection height scheme of the model. Sensitivity tests highlighted that injection heights of 12.5 km for BC (based on previous studies) and 10 km for the NWT fires yielded the strongest correlations with ground‐based measurements. Applying these injection heights to the model significantly improves the simulated plume transport and agreement with ground‐ and space‐based observations. GEOS‐Chem was also used to estimate the magnitude of secondary in‐plume production of CH3OH and HCOOH; it was found to be an important component (∼18%) of the enhanced HCOOH columns at Eureka.info:eu-repo/semantics/publishe

    Observations of Extreme Wildfire VOC Enhancements over the Canadian High Arctic

    No full text
    Wildfires are a common occurrence in many parts of the globe and can emit significant quantities of trace gases and particulate matter, negatively impacting air quality on large spatial scales. Among the various trace gases emitted by wildfires are volatile organic compounds (VOCs). Four VOCs that are of particular importance are methanol (CH3OH), formic acid (HCOOH), peroxyacetyl nitrate (PAN), and ethylene (C2H4). These reactive VOCs can have a variety of negative impacts on the atmospheric chemistry and environment of remote regions including influencing trace gas budgets, impacting atmospheric acidity, and contributing to the ‘Arctic haze’ pollution phenomenon.During August 2017, two independent large-scale wildfires in British Columbia and the Northwest Territories of Canada generated vast smoke plumes that merged and were subsequently transported to the high Arctic. Simultaneous observations by a high-resolution ground-based Fourier transform infrared (FTIR) spectrometer at the Polar Environment Research Laboratory (PEARL) in Eureka, Nunavut (80.05°N, 86.42°W), and the Infrared Atmospheric Sounding Interferometer (IASI) satellite instruments display extreme enhancements in these species relative to background concentrations during the fire-affected period in late August 2017, demonstrating the long-range transport and secondary formation of these typically short-lived species. Comparisons of observations with the GEOS-Chem global chemical transport model illustrate that this exceptional wildfire event contributed to a substantial perturbation to the VOC budget of the high-Arctic atmosphere.info:eu-repo/semantics/nonPublishe

    Observations of Extreme Wildfire Enhancements of CH3OH, HCOOH, and PAN over the Canadian High Arctic

    No full text
    Wildfires are a common occurrence in many parts of the globe and can emit significant quantities of trace gases and particulate matter, negatively impacting air quality on large spatial scales. Among the various trace gases emitted by wildfires are volatile organic compounds (VOCs). Three VOCs that are of particular importance are methanol (CH3OH), formic acid (HCOOH), and peroxyacetyl nitrate (PAN). CH3OH is the one of the most abundant VOCs in the atmosphere, and it influences the budgets of many tropospheric species including the hydroxyl radical, carbon monoxide, formaldehyde, and ozone. HCOOH is the most abundant tropospheric carboxylic acid, and thus can have significant impacts on atmospheric acidity, particularly in remote regions such as the Arctic. Lastly, PAN is a key, thermally unstable reservoir species of tropospheric nitrogen radicals (NOx = NO + NO2), controlling the production of tropospheric ozone, and contributing to the ‘Arctic haze’ pollution phenomenon at high latitudes.During August 2017, two independent large-scale wildfires in British Columbia and the Northwest Territories of Canada generated vast smoke plumes that merged and were subsequently transported to the high Arctic. Simultaneous observations by a high-resolution ground-based Fourier transform infrared (FTIR) spectrometer at the Polar Environment Research Laboratory (PEARL) in Eureka, Nunavut (80.05°N, 86.42°W), and the Infrared Atmospheric Sounding Interferometer (IASI) satellite instruments display extreme enhancements in these three species relative to background concentrations during the fire-affected period in late August 2017, demonstrating the long-range transport and secondary formation of these typically short-lived species. Initial results of the analysis of this unique biomass burning event will be presented, including comparisons of observations with the GEOS-Chem global chemical transport model.info:eu-repo/semantics/nonPublishe

    First retrievals of peroxyacetyl nitrate (PAN) from ground-based FTIR solar spectra recorded at remote sites, comparison with model and satellite data

    No full text
    International audiencePeroxyacetyl nitrate (PAN) is the main tropospheric reservoir of NO x (NO þ NO 2). Its lifetime can reach several months in the upper cold troposphere. This enables the long-range transport of NO x radicals, under the form of PAN, far from the regions of emission. The subsequent release of NO x through the PAN thermal decomposition leads to the efficient formation of tropospheric ozone (O 3), with important consequences for tropospheric oxidative capacity and air quality. The chemical properties of PAN have stimulated the progressive development of remote-sensing products by the satellite community, and recent additions open the prospect for the production of decadal and near-global time series. These products will provide new constraints on the distribution and evolution of this key trace gas in the Earth's atmosphere, but they will also require reliable measurements for validation and characterization of performance. We present an approach that has been developed to retrieve PAN total columns from ground-based high-resolution solar absorption Fourier transform infrared (FTIR) spectra. This strategy is applied to observations recorded at remote FTIR stations of the Network for the Detection of Atmospheric Composition Change (NDACC). The resulting data sets are compared with total column time series derived from IASI (Infrared Atmospheric Sounding Interferometer) satellite observations and to a global chemical transport model. The results are discussed in terms of their overall consistency, mutual agreement, and seasonal cycles. Noticeable is the fact that the FTIR data point to substantial deficiencies in the global model simulation over high latitudes, a poorly sampled region, with an underestimation of the PAN columns during spring, at the peak of the seasonal cycle. Finally, we suggest avenues for development that should make it possible to limit intra-or intersite biases and extend the retrieval of PAN to other NDACC stations that are more affected by water vapor interferences

    Record springtime stratospheric ozone depletion at 80°N in 2020

    No full text
    International audienceThe Arctic winter of 2019-2020 was characterized by an unusually persistent polar vortex and temperatures in the lower stratosphere that were consistently below the threshold for the formation of polar stratospheric clouds (PSCs). These conditions led to ozone loss that is comparable to the Antarctic ozone hole. Ground-based measurements from a suite of instruments at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Canada (80.05°N, 86.42°W) were used to investigate chemical ozone depletion. The vortex was located above Eureka longer than in any previous year in the 20-year dataset and lidar measurements provided evidence of polar stratospheric clouds (PSCs) above Eureka. Additionally, UV-visible zenith-sky Differential Optical Absorption Spectroscopy (DOAS) measurements showed record ozone loss in the 20-year dataset, evidence of denitrification along with the slowest increase of NO2 during spring, as well as enhanced reactive halogen species (OClO and BrO). Complementary measurements of HCl and ClONO2 (chlorine reservoir species) from a Fourier transform infrared (FTIR) spectrometer showed unusually low columns that were comparable to 2011, the previous year with significant chemical ozone depletion. Record low values of HNO3 in the FTIR dataset are in accordance with the evidence of PSCs and a denitrified atmosphere. Estimates of chemical ozone loss were derived using passive ozone from the SLIMCAT offline chemical transport model to account for dynamical contributions to the stratospheric ozone budget

    First retrievals of peroxyacetyl nitrate (PAN) from ground-based FTIR solar spectra recorded at remote sites, comparison with model and satellite data

    Get PDF
    Peroxyacetyl nitrate (PAN) is the main tropospheric reservoir of NOx (NO + NO2). Its lifetime can reach several months in the upper cold troposphere. This enables the long-range transport of NOx radicals, under the form of PAN, far from the regions of emission. The subsequent release of NOx through the PAN thermal decomposition leads to the efficient formation of tropospheric ozone (O3), with important consequences for tropospheric oxidative capacity and air quality. The chemical properties of PAN have stimulated the progressive development of remote-sensing products by the satellite community, and recent additions open the prospect for the production of decadal and near-global time series. These products will provide new constraints on the distribution and evolution of this key trace gas in the Earth’s atmosphere, but they will also require reliable measurements for validation and characterization of performance. We present an approach that has been developed to retrieve PAN total columns from ground-based high-resolution solar absorption Fourier transform infrared (FTIR) spectra. This strategy is applied to observations recorded at remote FTIR stations of the Network for the Detection of Atmospheric Composition Change (NDACC). The resulting data sets are compared with total column time series derived from IASI (Infrared Atmospheric Sounding Interferometer) satellite observations and to a global chemical transport model. The results are discussed in terms of their overall consistency, mutual agreement, and seasonal cycles. Noticeable is the fact that the FTIR data point to substantial deficiencies in the global model simulation over high latitudes, a poorly sampled region, with an underestimation of the PAN columns during spring, at the peak of the seasonal cycle. Finally, we suggest avenues for development that should make it possible to limit intra- or intersite biases and extend the retrieval of PAN to other NDACC stations that are more affected by water vapor interferences

    Unprecedented spring 2020 ozone depletion in the context of 20 years of measurements at Eureka, Canada

    No full text
    International audienceIn the winter and spring of 2019/2020, the unusually cold, strong, and stable polar vortex created favorable conditions for ozone depletion in the Arctic. Chemical ozone loss started earlier than in any previous year in the satellite era, and continued until late March, resulting in the unprecedented reduction of the ozone column. The vortex was located above the Polar Environment Atmospheric Research Laboratory in Eureka, Canada (80°N, 86°W) from late February to the end of April, presenting an excellent opportunity to examine ozone loss from a single ground station.Measurements from a suite of instruments show that total column ozone was at an all‐time low in the 20‐year dataset, 22‐102 DU below previous records set in 2011. Ozone minima ( < 200 DU), enhanced OClO and BrO slant columns, and unusually low HCl, ClONO2, and HNO3 columns were observed in March. Polar stratospheric clouds were present as late as 20 March, and ozonesondes show unprecedented depletion in the March and April profiles (to < 0.2 ppmv).While both chemical and dynamical factors lead to reduced ozone when the vortex is cold, the contribution of chemical depletion (based on the variable correlation of ozone and temperature) was exceptional in spring 2020 when compared to typical Arctic winters.Mean chemical ozone loss over Eureka was estimated to be 111‐126 DU (27‐31%) using April measurements and passive ozone from the SLIMCAT chemical transport model. While absolute ozone loss was generally smaller in 2020 than in 2011, percentage ozone loss was greater in 2020

    Global Atmospheric OCS Trend Analysis From 22 NDACC Stations

    Get PDF
    Abstract Carbonyl sulfide (OCS) is a non-hygroscopic trace species in the free troposphere and a large sulfur reservoir maintained by both direct oceanic, geologic, biogenic, and anthropogenic emissions and the oxidation of other sulfur-containing source species. It is the largest source of sulfur transported to the stratosphere during volcanically quiescent periods. Data from 22 ground-based globally dispersed stations are used to derive trends in total and partial column OCS. Middle infrared spectral data are recorded by solar-viewing Fourier transform interferometers that are operated as part of the Network for the Detection of Atmospheric Composition Change between 1986 and 2020. Vertical information in the retrieved profiles provides analysis of discreet altitudinal regions. Trends are found to have well-defined inflection points. In two linear trend time periods ∼2002 to 2008 and ∼2008 to 2016 tropospheric trends range from ∼0.0 to (1.55 ± 0.30 %/yr) in contrast to the prior period where all tropospheric trends are negative. Regression analyses show strongest correlation in the free troposphere with anthropogenic emissions. Stratospheric trends in the period ∼2008 to 2016 are positive up to (1.93 ± 0.26 %/yr) except notably low latitude stations that have negative stratospheric trends. Since ∼2016, all stations show a free tropospheric decrease to 2020. Stratospheric OCS is regressed with simultaneously measured N2O to derive a trend accounting for dynamical variability. Stratospheric lifetimes are derived and range from (54.1 ± 9.7)yr in the sub-tropics to (103.4 ± 18.3)yr in Antarctica. These unique long-term measurements provide new and critical constraints on the global OCS budget
    corecore