432 research outputs found

    Monoclonal antibody detects Ag polymorphism of apolipoprotein B

    Get PDF
    AbstractA monoclonal antibody (MB-19) was used to investigate the polymorphism of apolipoprotein B in a large family and in unrelated subjects. Apolipoprotein B was shown to exhibit high-, intermediate- or low-affinitybinding to this antibody. Thus, MB-19 bound strongly to the Ag(c) epitope, an Ag antigenic domain previously characterized by human antisera, while it bound only weakly to the allelic epitope Ag(g). It proved therefore useful for the detection of the two corresponding allelic apoB species designated apoBc (high-affinity binding) and apoBg (low-affinity binding), and for confirming their co-dominant transmission. Intermediate binding resulted from the presence of a mixture of both apoB populations in heterozygous subjects

    Mycophenolate Mofetil Decreases Atherosclerotic Lesion Size by Depression of Aortic T-Lymphocyte and Interleukin-17–Mediated Macrophage Accumulation

    Get PDF
    ObjectivesThis study tested whether immunosuppression with mycophenolate mofetil (MMF) inhibits atherosclerosis development in apolipoprotein-E–deficient (Apoe−/−) mice and investigated the mechanism.BackgroundChronic vascular inflammation involving both innate and adaptive immunity is central in the development of atherosclerosis, but immunosuppressive treatment is not uniformly beneficial. The immunosuppressive MMF targets lymphocyte proliferation by inhibiting inosine-monophosphate dehydrogenase.MethodsYoung and aged Apoe−/− mice were treated with 30 mg/kg daily MMF during 12 and 3 weeks of a high-fat diet, respectively. Aortic lesion size and composition was investigated by histology and flow cytometry; soluble inflammatory mediators were investigated by enzyme-linked immunosorbent assay.ResultsMacroscopic and histologic aortic atherosclerotic lesions were significantly decreased in both MMF-treated groups. While systemic immunoglobulin G directed against low-density lipoproteins was not significantly altered, the T-cell cytokine interleukin (IL)-17 was significantly reduced in plasma of MMF-treated mice and supernatants from their aortas after T-cell stimulation. The MMF treatment decreased aortic αβ T-cell receptor+ lymphocyte proliferation and cell numbers. Also, aortic contents of CD11b+CD11c+ cells and their proliferation were reduced in MMF-treated Apoe−/− mice. The IL-17 supplementation restored the number of proliferating aortic CD11b+CD11c+ cells in MMF-treated mice. The IL-17 receptor A was highly expressed on circulating monocytes that are macrophage progenitors. Genetic deletion of IL-17 receptor A or IL-17A reduced inflammatory peritoneal CD11b+CD11c+ macrophage accumulation.ConclusionsThe lymphocyte-directed immunosuppressant MMF that curbs IL-17 production was a successful antiatherosclerotic treatment. Our data delineate a role for IL-17 in CD11b+CD11c+ cell accumulation

    High plasma leptin levels confer increased risk of atherosclerosis in women with systemic lupus erythematosus, and are associated with inflammatory oxidised lipids.

    Get PDF
    BackgroundPatients with systemic lupus erythematosus (SLE) are at increased risk of atherosclerosis, even after accounting for traditional risk factors. High levels of leptin and low levels of adiponectin are associated with both atherosclerosis and immunomodulatory functions in the general population.ObjectiveTo examine the association between these adipokines and subclinical atherosclerosis in SLE, and also with other known inflammatory biomarkers of atherosclerosis.MethodsCarotid ultrasonography was performed in 250 women with SLE and 122 controls. Plasma leptin and adiponectin levels were measured. Lipoprotein a (Lp(a)), oxidised phospholipids on apoB100 (OxPL/apoB100), paraoxonase, apoA-1 and inflammatory high-density lipoprotein (HDL) function were also assessed.ResultsLeptin levels were significantly higher in patients with SLE than in controls (23.7±28.0 vs 13.3±12.9 ng/ml, p<0.001). Leptin was also higher in the 43 patients with SLE with plaque than without plaque (36.4±32.3 vs 20.9±26.4 ng/ml, p=0.002). After multivariate analysis, the only significant factors associated with plaque in SLE were leptin levels in the highest quartile (≥29.5 ng/ml) (OR=2.8, p=0.03), proinflammatory HDL (piHDL) (OR=12.8, p<0.001), age (OR=1.1, p<0.001), tobacco use (OR=7.7, p=0.03) and hypertension (OR=3.0, p=0.01). Adiponectin levels were not significantly associated with plaque in our cohort. A significant correlation between leptin and piHDL function (p<0.001), Lp(a) (p=0.01) and OxPL/apoB100 (p=0.02) was also present.ConclusionsHigh leptin levels greatly increase the risk of subclinical atherosclerosis in SLE, and are also associated with an increase in inflammatory biomarkers of atherosclerosis such as piHDL, Lp(a) and OxPL/apoB100. High leptin levels may help to identify patients with SLE at risk of atherosclerosis

    Increased glycation and oxidative damage to apolipoprotein B100 of LDL cholesterol in patients with type 2 diabetes and effect of metformin

    Get PDF
    OBJECTIVE The aim of this study was to investigate whether apolipoprotein B100 of LDL suffers increased damage by glycation, oxidation, and nitration in patients with type 2 diabetes, including patients receiving metformin therapy. RESEARCH DESIGN AND METHODS For this study, 32 type 2 diabetic patients and 21 healthy control subjects were recruited; 13 diabetic patients were receiving metformin therapy (median dose: 1.50 g/day). LDL was isolated from venous plasma by ultracentrifugation, delipidated, digested, and analyzed for protein glycation, oxidation, and nitration adducts by stable isotopic dilution analysis tandem mass spectrometry. RESULTS Advanced glycation end product (AGE) content of apolipoprotein B100 of LDL from type 2 diabetic patients was higher than from healthy subjects: arginine-derived AGE, 15.8 vs. 5.3 mol% (P < 0.001); and lysine-derived AGE, 2.5 vs. 1.5 mol% (P < 0.05). Oxidative damage, mainly methionine sulfoxide residues, was also increased: 2.5 vs. 1.1 molar equivalents (P < 0.001). 3-Nitrotyrosine content was decreased: 0.04 vs. 0.12 mol% (P < 0.05). In diabetic patients receiving metformin therapy, arginine-derived AGE and methionine sulfoxide were lower than in patients not receiving metformin: 19.3 vs. 8.9 mol% (P < 0.01) and 2.9 vs. 1.9 mol% (P < 0.05), respectively; 3-nitrotyrosine content was higher: 0.10 vs. 0.03 mol% (P < 0.05). Fructosyl-lysine residue content correlated positively with fasting plasma glucose. Arginine-derived AGE residue contents were intercorrelated and also correlated positively with methionine sulfoxide. CONCLUSIONS Patients with type 2 diabetes had increased arginine-derived AGEs and oxidative damage in apolipoprotein B100 of LDL. This was lower in patients receiving metformin therapy, which may contribute to decreased oxidative damage, atherogenicity, and cardiovascular disease

    Apoptotic Cells with Oxidation-specific Epitopes Are Immunogenic and Proinflammatory

    Get PDF
    Oxidation of low density lipoprotein (LDL) generates a variety of oxidatively modified lipids and lipid-protein adducts that are immunogenic and proinflammatory, which in turn contribute to atherogenesis. Cells undergoing apoptosis also display oxidized moieties on their surface membranes, as determined by binding of oxidation-specific monoclonal antibodies. In the present paper, we demonstrated by mass spectrometry that in comparison with viable cells, membranes of cells undergoing apoptosis contain increased levels of biologically active oxidized phospholipids (OxPLs). Indeed, immunization of mice with syngeneic apoptotic cells induced high autoantibody titers to various oxidation-specific epitopes of oxidized LDL, including OxPLs containing phosphorylcholine, whereas immunization with viable thymocytes, primary necrotic thymocytes, or phosphate-buffered saline did not. Reciprocally, these antisera specifically bound to apoptotic cells through the recognition of oxidation-specific epitopes. Moreover, splenocyte cultures from mice immunized with apoptotic cells spontaneously released significant levels of T helper cell (Th) 1 and Th2 cytokines, whereas splenocytes from controls yielded only low levels. Finally, we demonstrated that the OxPLs of apoptotic cells activated endothelial cells to induce monocyte adhesion, a proinflammatory response that was abrogated by an antibody specific to oxidized phosphatidylcholine. These results suggest that apoptotic cell death generates oxidatively modified moieties, which can induce autoimmune responses and a local inflammatory response by recruiting monocytes via monocyte–endothelial cell interaction

    Sialic Acid-Binding Immunoglobulin-like Lectin G Promotes Atherosclerosis and Liver Inflammation by Suppressing the Protective Functions of B-1 Cells.

    Get PDF
    Atherosclerosis is initiated and sustained by hypercholesterolemia, which results in the generation of oxidized LDL (OxLDL) and other metabolic byproducts that trigger inflammation. Specific immune responses have been shown to modulate the inflammatory response during atherogenesis. The sialic acid-binding immunoglobulin-like lectin G (Siglec-G) is a negative regulator of the functions of several immune cells, including myeloid cells and B-1 cells. Here, we show that deficiency of Siglec-G in atherosclerosis-prone mice inhibits plaque formation and diet-induced hepatic inflammation. We further demonstrate that selective deficiency of Siglec-G in B cells alone is sufficient to mediate these effects. Levels of B-1 cell-derived natural IgM with specificity for OxLDL were significantly increased in the plasma and peritoneal cavity of Siglec-G-deficient mice. Consistent with the neutralizing functions of OxLDL-specific IgM, Siglec-G-deficient mice were protected from OxLDL-induced sterile inflammation. Thus, Siglec-G promotes atherosclerosis and hepatic inflammation by suppressing protective anti-inflammatory effector functions of B cells

    Deficiency of Antigen Presenting Cell Invariant Chain Reduces Atherosclerosis in Mice

    Get PDF
    August 25, 2010Background: Adaptive immunity and innate immunity play important roles in atherogenesis. Invariant chain (CD74) mediates antigen-presenting cell antigen presentation and T-cell activation. This study tested the hypothesis that CD74-deficient mice have reduced numbers of active T cells and resist atherogenesis. Methods and Results: In low-density lipoprotein receptor–deficient (Ldlr[superscript −/−]) mice, CD74 deficiency (Ldlr[superscript −/−]Cd74[superscript −/−]) significantly reduced atherosclerosis and CD25+-activated T cells in the atheromata. Although Ldlr[superscript −/−]Cd74[superscript −/−] mice had decreased levels of plasma immunoglobulin (Ig) G1, IgG2b, and IgG2c against malondialdehyde-modified LDL (MDA-LDL), presumably as a result of impaired antigen-presenting cell function, Ldlr[superscript −/−]Cd74[superscript −/−] mice showed higher levels of anti–MDA-LDL IgM and IgG3. After immunization with MDA-LDL, Ldlr[superscript −/−]Cd74[superscript −/−] mice had lower levels of all anti–MDA-LDL Ig isotypes compared with Ldlr[superscript −/−] mice. As anticipated, only Ldlr[superscript −/−] splenocytes responded to in vitro stimulation with MDA-LDL, producing Th1/Th2 cytokines. Heat shock protein-65 immunization enhanced atherogenesis in Ldlr[superscript −/−] mice, but Ldlr[superscript −/−] Cd74[superscript −/−] mice remained protected. Compared with Ldlr[superscript −/−] mice, Ldlr[superscript −/−]Cd74[superscript −/−] mice had higher anti–MDA-LDL autoantibody titers, fewer lesion CD25+-activated T cells, impaired release of Th1/Th2 cytokines from antigen-presenting cells after heat shock protein-65 stimulation, and reduced levels of all plasma anti–heat shock protein-65 Ig isotypes. Cytofluorimetry of splenocytes and peritoneal cavity cells of MDA-LDL– or heat shock protein-65–immunized mice showed increased percentages of autoantibody-producing marginal zone B and B-1 cells in Ldlr[superscript −/−]Cd74[superscript −/−] mice compared with Ldlr[superscript −/−] mice. Conclusions: Invariant chain deficiency in Ldlr[superscript −/−] mice reduced atherosclerosis. This finding was associated with an impaired adaptive immune response to disease-specific antigens. Concomitantly, an unexpected increase in the number of innate-like peripheral B-1 cell populations occurred, resulting in increased IgM/IgG3 titers to the oxidation-specific epitopes
    corecore