62 research outputs found

    The Bromodomains of the mammalian SWI/SNF (mSWI/SNF) ATPases Brahma (BRM) and Brahma Related Gene 1 (BRG1) promote chromatin interaction and are critical for skeletal muscle differentiation [preprint]

    Get PDF
    Skeletal muscle differentiation induces changes in the epigenome of myoblasts as they proceed towards a myogenic phenotype. mSWI/SNF chromatin remodeling enzymes coordinate with lineage-determining transcription factors and are key regulators of differentiation. Three mSWI/SNF proteins, the mutually exclusive ATPases, BRG1 and BRM, and the BAF180 protein (Polybromo1, PBRM1) contain bromodomains belonging to the same structural subfamily. Bromodomains bind to acetylated lysines on histone N-terminal tails and on other proteins. Pharmacological inhibition of mSWI/SNF bromodomain function using the selective inhibitor PFI-3 reduced differentiation, decreased expression of myogenic genes, and increased the expression of cell cycle-related genes and the number of cells that remained in the cell cycle. Knockdown of BAF180 had no effect on differentiation, suggesting that only the BRG1 and BRM bromodomains contributed to differentiation. Comparison with existing gene expression data from myoblasts subjected to knockdown of BRG1 or BRM showed that bromodomain function was required for a subset of BRG1- and BRM-dependent gene expression. ChIP analysis revealed decreased BRG1 and BRM binding to target gene promoters, indicating that the BRG1 and BRM bromodomains promote chromatin binding. Thus mSWI/SNF ATPase bromodomains contribute to cell cycle exit, to skeletal muscle-specific gene expression, and to stable promoter binding by the mSWI/SNF ATPases

    Exclusion of dysfunctional mitochondria from Balbiani body during early oogenesis of Thermobia

    Get PDF
    Oocytes of many invertebrate and vertebrate species contain a characteristic organelle complex known as the Balbiani body (Bb). Until now, three principal functions have been ascribed to this complex: delivery of germ cell determinants and localized RNAs to the vegetal cortex/posterior pole of the oocyte, transport of the mitochondria towards the germ plasm, and participation in the formation of lipid droplets. Here, we present the results of a computer-aided 3D reconstruction of the Bb in the growing oocytes of an insect, Thermobia domestica. Our analyses have shown that, in Thermobia, the central part of each fully developed Bb comprises a single intricate mitochondrial network. This “core” network is surrounded by several isolated bean-shaped mitochondrial units that display lowered membrane potential and clear signs of degeneration. In light of the above results and recent theoretical models of mitochondrial quality control, the role of the Bb is discussed. We suggest that, in addition to the aforementioned functions, the Bb is implicated in the selective elimination of dysfunctional mitochondria during oogenesis. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00441-016-2414-x) contains supplementary material, which is available to authorized users

    Selective Targeting of Bromodomains of the Bromodomain-PHD Fingers Family Impairs Osteoclast Differentiation

    Get PDF
    Histone acetyltransferases of the MYST family are recruited to chromatin by BRPF scaffolding proteins. We explored functional consequences and the therapeutic potential of inhibitors targeting acetyl-lysine dependent protein interaction domains (bromodomains) present in BRPF1-3 in bone maintenance. We report three potent and selective inhibitors: one (PFI-4) with high selectivity for the BRPF1B isoform and two pan-BRPF bromodomain inhibitors (OF-1, NI-57). The developed inhibitors displaced BRPF bromodomains from chromatin and did not inhibit cell growth and proliferation. Intriguingly, the inhibitors impaired RANKL-induced differentiation of primary murine bone marrow cells and human primary monocytes into bone resorbing osteoclasts by specifically repressing transcriptional programs required for osteoclastogenesis. The data suggest a key role of BRPF in regulating gene expression during osteoclastogenesis, and the excellent druggability of these bromodomains may lead to new treatment strategies for patients suffering from bone loss or osteolytic malignant bone lesions

    The Bromodomains of the mammalian SWI/SNF (mSWI/SNF) ATPases Brahma (BRM) and Brahma Related Gene 1 (BRG1) promote chromatin interaction and are critical for skeletal muscle differentiation

    Get PDF
    Skeletal muscle regeneration is mediated by myoblasts that undergo epigenomic changes to establish the gene expression program of differentiated myofibers. mSWI/SNF chromatin remodeling enzymes coordinate with lineage-determining transcription factors to establish the epigenome of differentiated myofibers. Bromodomains bind to acetylated lysines on histone N-terminal tails and other proteins. The mutually exclusive ATPases of mSWI/SNF complexes, BRG1 and BRM, contain bromodomains with undefined functional importance in skeletal muscle differentiation. Pharmacological inhibition of mSWI/SNF bromodomain function using the small molecule PFI-3 reduced differentiation in cell culture and in vivo through decreased myogenic gene expression, while increasing cell cycle-related gene expression and the number of cells remaining in the cell cycle. Comparative gene expression analysis with data from myoblasts depleted of BRG1 or BRM showed that bromodomain function was required for a subset of BRG1- and BRM-dependent gene expression. Reduced binding of BRG1 and BRM after PFI-3 treatment showed that the bromodomain is required for stable chromatin binding at target gene promoters to alter gene expression. Our findings demonstrate that mSWI/SNF ATPase bromodomains permit stable binding of the mSWI/SNF ATPases to promoters required for cell cycle exit and establishment of muscle-specific gene expression

    Calcineurin broadly regulates the initiation of skeletal muscle-specific gene expression by binding target promoters and facilitating the interaction of the SWI/SNF chromatin remodeling enzyme

    Get PDF
    Calcineurin (Cn) is a calcium-activated serine/threonine protein phosphatase that is broadly implicated in diverse cellular processes, including the regulation of gene expression. During skeletal muscle differentiation, Cn activates the NFAT transcription factor but also promotes differentiation by counteracting the negative influences of protein kinase C beta (PKCbeta) via dephosphorylation and activation of BRG1, an enzymatic subunit of the mammalian SWI/SNF ATP-dependent chromatin remodeling enzyme. Here we identified four major temporal patterns of Cn-dependent gene expression in differentiating myoblasts and determined that Cn is broadly required for the activation of the myogenic gene expression program. Mechanistically, Cn promotes gene expression through direct binding to myogenic promoter sequences and facilitating the binding of BRG1, other SWI/SNF subunit proteins, and MyoD, a critical lineage determinant for skeletal muscle differentiation. We conclude that the Cn phosphatase directly impacts the expression of myogenic genes by promoting ATP-dependent chromatin remodeling and formation of transcription-competent promoters

    TRAFD1 (FLN29) Interacts with Plekhm1 and Regulates Osteoclast Acidification and Resorption

    Get PDF
    Plekhm1 is a large, multi-modular, adapter protein implicated in osteoclast vesicle trafficking and bone resorption. In patients, inactivating mutations cause osteopetrosis, and gain-of-function mutations cause osteopenia. Investigations of potential Plekhm1 interaction partners by mass spectrometry identified TRAFD1 (FLN29), a protein previously shown to suppress toll-like receptor signaling in monocytes/macrophages, thereby dampening inflammatory responses to innate immunity. We mapped the binding domains to the TRAFD1 zinc finger (aa 37-60), and to the region of Plekhm1 between its second pleckstrin homology domain and its C1 domain (aa 784-986). RANKL slightly increased TRAFD1 levels, particularly in primary osteoclasts, and the co-localization of TRAFD1 with Plekhm1 also increased with RANKL treatment. Stable knockdown of TRAFD1 in RAW 264.7 cells inhibited resorption activity proportionally to the degree of knockdown, and inhibited acidification. The lack of acidification occurred despite the presence of osteoclast acidification factors including carbonic anhydrase II, a3-V-ATPase, and the ClC7 chloride channel. Secretion of TRAP and cathepsin K were also markedly inhibited in knockdown cells. Truncated Plekhm1 in ia/ia osteopetrotic rat cells prevented vesicle localization of Plekhm1 and TRAFD1. We conclude that TRAFD1, in association with Plekhm1/Rab7-positive late endosomes-early lysosomes, has a previously unknown role in vesicle trafficking, acidification, and resorption in osteoclasts

    Selective Targeting of Bromodomains of the Bromodomain-PHD Fingers Family Impairs Osteoclast Differentiation

    Get PDF
    Histone acetyltransferases of the MYST family are recruited to chromatin by BRPF scaffolding proteins. We explored functional consequences and the therapeutic potential of inhibitors targeting acetyl-lysine dependent protein interaction domains (bromodomains) present in BRPF1-3 in bone maintenance. We report three potent and selective inhibitors: one (PFI-4) with high selectivity for the BRPF1B isoform, and two pan-BRPF bromodomain inhibitors (OF-1, NI-57). The developed inhibitors displaced BRPF bromodomains from chromatin and did not inhibit cell growth and proliferation. Intriguingly, the inhibitors impaired RANKL-induced differentiation of primary murine bone marrow cells and human primary monocytes into bone resorbing osteoclasts by specifically repressing transcriptional programs required for osteoclastogenesis. The data suggest a key role of BRPF in regulating gene expression during osteoclastogenesis and the excellent druggability of these bromodomains may lead to new treatment strategies for patients suffering from bone loss or osteolytic malignant bone lesions

    Multiparty negotiations in insurance area – basic conception

    No full text
    This paper will describe multiparty negotiations in the insurance area. Author will present and justify three methodological gaps connected with this topic: First about the negotiations in insurance market, second will be lack of comprehensive studies on the specificity of multiparty negotiations, and the last one about multiparty negotiations in insurance market

    Structure and function of Balbiani body in vertebrates and invertebrates' oocytes.

    No full text
    W ooplazmie wielu gatunków zwierząt można obserwować niesymetrycznie zlokalizowaną cytoplazmatyczną strukturę – ciało Balbianiego. Stanowi ona nagromadzenie mitochondriów, elementów siateczki śródplazmatycznej, aparatów Golgiego oraz charakterystycznych nieobłonionych struktur tzw. ziaren płciowych. Ciało Balbianiego zostało najlepiej poznane u Xenopus laevis. Powstaje w czasie wczesnej prewitelogenezy w okolicy jądra, następnie ulega rozproszeniu i segregacji do odpowiednich blastomerów. Ciało Balbianiego może być odpowiedzialne za determinację komórek linii płciowej, polaryzację oocytu, segregację mitochondriów. Niniejsza praca stanowi przegląd informacji dotyczących morfologii i funkcji ciała Balbianiego różnych gatunków kręgowców i bezkręgowców.In ooplasm of many animal species we can observe asymmetrically localised structure – Balbiani body. It is an accumulation of mitochondria, endoplasmatic reticulum, Golgi complexes, membrane-less structures called germinal granules and localised mRNA. Balbiani body has been widely studied in the model species Xenopus laevis. It appears in early previtellogenesis next to the nucleus, then dissipates and after that it is segregated to specific blastomeres. Balbiani body can be responsible for germ cell determination, oocyte polarization, mitochondria segregation. This review shows recent information about Balbiani body structure and its functions in varied animal species

    Kwas erukowy a polarność cząsteczki glicerydowej

    No full text
    W celu wyjaśnienia oddziaływania kwasu erukowego na właściwości glicerydów badano ich cechy fizyczne. Nie stwierdzono proporcjonalności między zawartością kwasu erukowego a polaryzacją molową i momentem dipolowym glicerydów. Sugeruje się, że niska zawartość asymetrycznego glicerydu dwuerukowo-oleinowego w oleju rzepakowym może być związana z jego nieproporcjonalnie dużym momentem dipolowym
    corecore