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 2 

ABSTRACT: Skeletal muscle differentiation induces changes in the epigenome of myoblasts as 20 

they proceed towards a myogenic phenotype. mSWI/SNF chromatin remodeling enzymes 21 

coordinate with lineage-determining transcription factors and are key regulators of differentiation. 22 

Three mSWI/SNF proteins, the mutually exclusive ATPases, BRG1 and BRM, and the BAF180 23 

protein (Polybromo1, PBRM1) contain bromodomains belonging to the same structural subfamily.  24 

Bromodomains bind to acetylated lysines on histone N-terminal tails and on other proteins.  25 

Pharmacological inhibition of mSWI/SNF bromodomain function using the selective inhibitor 26 

PFI-3 reduced differentiation, decreased expression of myogenic genes, and increased the 27 

expression of cell cycle-related genes, and the number of cells that remained in the cell cycle. 28 

Knockdown of BAF180 had no effect on differentiation, suggesting that only the BRG1 and BRM 29 

bromodomains contributed to differentiation. Comparison with existing gene expression data from 30 

myoblasts subjected to knockdown of BRG1 or BRM showed that bromodomain function was 31 

required for a subset of BRG1- and BRM-dependent gene expression. ChIP analysis revealed 32 

decreased BRG1 and BRM binding to target gene promoters, indicating that the BRG1 and BRM 33 

bromodomains promote chromatin binding. Thus mSWI/SNF ATPase bromodomains contribute 34 

to cell cycle exit, to skeletal muscle-specific gene expression, and to stable promoter binding by 35 

the mSWI/SNF ATPases. 36 

 37 

INTRODUCTION 38 

Regulation of gene expression is a tightly coordinated process that is dependent on transcription 39 

factors, coactivators and chromatin remodelers. Some of these regulators are tissue-specific and 40 

act on target genes in a context-dependent manner. Tissue-specific regulation is absolutely crucial 41 

for proper development of multi-cellular life forms in which all cells contain the same genetic 42 
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information. Portions of the genome that are irrelevant to a particular tissue type are often 43 

condensed into repressive heterochromatin as development and differentiation occur (1, 2). In 44 

contrast, coordinated activity of lineage-determining transcription factors and chromatin 45 

remodelers, in particular the mSWI/SNF family of chromatin remodeling enzymes, drives many 46 

differentiation events, including skeletal muscle differentiation (3–7). The mSWI/SNF enzymes 47 

remodel chromatin in an ATP-dependent manner (8–10) and form a family of enzymes assembled 48 

into different configurations from a potential pool of more than twenty subunit proteins (11–13). 49 

The BRG1 and BRM ATPases act as mutually exclusive catalytic subunits (10).   50 

Skeletal muscle originates from the paraxial mesoderm during embryogenesis. Fetal skeletal 51 

myogenesis is characterized by an abundance of myogenic progenitor cells that divide actively and 52 

fuse to form multinucleated muscle fibers (14, 15). As the embryo develops into an adult, these 53 

progenitor cells become relatively sparse and quiescent. These adult stem cells are known as 54 

satellite cells and can be activated to proliferate and regenerate new myofibers in case of an injury 55 

to adult skeletal muscle (16–18). Upon activation, expression of myogenic regulatory factors 56 

(MRFs) – MYOD, MRF4, MYF5 and Myogenin - is initiated in a coordinated manner. MRFs are 57 

basic helix-loop-helix (bHLH) proteins that are evolutionarily conserved from worms to humans 58 

(19–21). They bind to consensus sequences called E-boxes at target muscle promoters and activate 59 

muscle-specific gene expression (22). Another family of transcription factors called the myocyte 60 

enhancer factor 2 (MEF2) family acts with the MRFs to promote expression of  the myogenic 61 

genes (23, 24). 62 

During skeletal myogenesis, the mSWI/SNF complex is recruited to the myogenic loci by MRFs 63 

(25–30), in some cases, in conjunction with PBX1 (25). Mechanistically, upon induction of 64 

differentiation in myocytes, the p38 kinase responds to extracellular cues by phosphorylating the 65 
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BAF60c subunit of mSWI/SNF chromatin remodeling enzymes, which is associated with MYOD 66 

on myogenic genes in the absence of other mSWI/SNF subunits in proliferating myoblasts (27, 67 

29). The phospho-BAF60c-MYOD complex then recruits the rest of the mSWI/SNF complex to 68 

myogenic loci, which promotes chromatin accessibility and activates gene expression (29). Once 69 

recruited to myogenic loci, the ATPase activity of BRG1 or BRM in the complex is known to be 70 

indispensable for expression of the differentiation-specific gene program (26, 28, 31). 71 

The BRG1 and BRM ATPases possess bromodomains in the C-terminal part of the protein (32–72 

34). Bromodomains are well-characterized motifs known to interact with acetylated lysine residues 73 

on the N-terminal tails of histones H3 and H4 (35, 36) and on other non-histone proteins (37). The 74 

interaction of bromodomains with acetylated histones has been determined to be crucial for 75 

regulation of some gene expression events (37). Based on structural homology, bromodomain-76 

containing proteins can be classified into eight families (35, 38). BRG1 and BRM belong to family 77 

VIII of bromodomains along with a third mSWI/SNF protein called BAF180 (Polybromo1, 78 

PBRM1, PB1) that contains six tandem bromodomains (38, 39) 79 

In this study, we characterized the role of mSWI/SNF bromodomains in the context of skeletal 80 

myogenesis. We showed that inhibiting bromodomain function using PFI-3, a specific 81 

pharmacological inhibitor that binds to the BRG1, BRM and BAF180 bromodomains (40–42), 82 

reduced the ability of mouse myoblasts to differentiate into myotubes. Using RNA-sequencing, 83 

we identified the genes whose expression is dependent on mSWI/SNF bromodomains. Broadly, 84 

proliferation-related genes were found to be upregulated by bromodomain inhibition while 85 

myogenic genes were downregulated. We also demonstrated that bromodomain function is 86 

essential for timely exit of myoblasts from the cell cycle upon induction of differentiation. We 87 

determined that BAF180 is not required for myogenesis in mouse myoblasts and demonstrated 88 
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that the BRG1 and BRM bromodomains play a crucial role in skeletal muscle differentiation by 89 

promoting the stable binding of BRG1 and BRM to target gene promoters. Thus, this study 90 

mechanistically demonstrates the specific importance of mSWI/SNF bromodomains in context of 91 

skeletal muscle differentiation. 92 

 93 

RESULTS 94 

Inhibition of bromodomain function results in aberrant myotube fusion 95 

PFI-3 is a pharmacological inhibitor specific for the BRG1, BRM and BAF180 bromodomains, 96 

members of bromodomain family VIII (40, 41).  Prior work showed that PFI-3 impaired 97 

differentiation of immortalized pre-adipocytes and myoblasts (42). The mechanisms responsible 98 

for the observed effects on differentiation were not defined, so we sought to investigate the roles 99 

played by mSWI/SNF bromodomains during myogenesis. 100 

C2C12 immortalized myoblasts and primary myoblasts isolated from the tibialis anterior muscles 101 

of 1-week old C57BL/6 mice were assayed for their ability to differentiate in the presence of PFI-102 

3 or the vehicle (DMSO). DMSO-treated C2C12 myoblasts immunostained for myosin heavy 103 

chain (MHC) showed formation of longer and thicker myotubes at 48h and 72h post induction of 104 

differentiation than did C2C12 myoblasts treated with PFI-3 (Fig 1a). The efficiency of myogenic 105 

differentiation can be scored by calculating fusion index, which is the ratio of the number of nuclei 106 

in MHC-stained cells to the total number of nuclei (43). C2C12 cells treated with PFI-3 showed a 107 

>50% decrease in fusion index at 24h, 48h and 72h as compared to control samples (Fig 1b).  108 

Similar results were observed when primary myoblasts were exposed to PFI-3. While DMSO-109 

treated primary myoblasts showed elongated myotubes upon induction of differentiation, the PFI-110 

3-treated cells showed fewer and less elongated myotubes at corresponding timepoints (Supp fig 111 
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1a). Quantitative analysis of differentiated primary myoblasts immunostained for MHC showed 112 

about a 25-30% decrease in fusion index (Supp fig 1b).  113 

We further quantitatively analyzed the extent of differentiation by counting the number of nuclei 114 

in MHC-positive myotubes and classifying them into groups at each timepoint. DMSO-treated 115 

C2C12 cells shifted from the majority of 48h myotubes having <5 nuclei to the majority of 116 

myotubes having >5 nuclei by 72h (Fig 1c). PFI-3-treated cells failed to make this switch; the 117 

majority of 72h myotubes had <5 nuclei (Fig 1c). Similarly, in PFI-3 treated primary cells, the 118 

number of myotubes with >5 nuclei at 36h was about one-third of those in DMSO-treated control 119 

cells. In PFI-3 treated samples, cells with a single nucleus positively immunostained for MHC 120 

were abundant, showing a failure of differentiating myoblasts to fuse (Supp fig 1c). These results 121 

suggest that an initial myogenic stimulus is present but is not fully implemented due to inhibition 122 

of bromodomain function. 123 

Myogenic genes are downregulated upon PFI-3 induced inhibition of mSWI/SNF 124 

bromodomains 125 

The results show that PFI-3 treatment causes defects in myogenic differentiation, including an 126 

inability of the differentiating myoblasts and/or nascent myotubes to fuse. Myomaker and 127 

myomixer have been identified as master regulators of myoblast fusion (44–47). We therefore 128 

determined whether the expression of these two regulators was altered upon PFI-3 induced 129 

bromodomain inhibition. The results show that expression of these two genes was significantly 130 

lower in PFI-3 treated C2C12 cells (Fig 2a). The expression of other myogenic genes like 131 

myogenin, creatine kinase and myosin light chain 1 was also significantly decreased in PFI-3 132 

treated samples, as was the expression of caveolin 3 and integrin 7A, two muscle differentiation-133 

related genes (Fig 2b). Western blot analysis confirmed the decreased expression of myosin 134 
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heavy chain in PFI-3 treated C2C12 cells (Fig 2c). Similar results were obtained for PFI-3 135 

treated primary myoblasts (Supp fig 2). The gene expression signatures from both C2C12 cells 136 

and primary myoblasts provides a molecular explanation for the differentiation phenotype caused 137 

by bromodomain inhibition.  138 

RNA-seq analysis of PFI-3 treated C2C12 cells shows upregulation of cell cycle genes and 139 

downregulation of myogenic genes 140 

To gain better insight into effect of the molecular mechanism of bromodomain inhibition on 141 

skeletal muscle differentiation, we performed RNA-sequencing of C2C12 cells treated with 142 

DMSO or PFI-3. Cells were harvested from proliferative stage (GM) and two differentiated stages 143 

(DM 24h and DM 48h post-induction). Libraries generated from the samples had ~45M unique 144 

reads. Transcripts were mapped to the mouse genome (mm10) and gene expression levels were 145 

calculated. Genes that were identified to be differentially expressed in both replicates for each 146 

condition and timepoint were considered for further analysis. 147 

We first examined whether PFI-3 treatment affected gene expression of the subunits of mSWI/SNF 148 

complexes. A recent characterization of sub-families of mSWI/SNF complexes identified 29 149 

subunit proteins (13). Assessment of expression of the genes encoding each of these proteins at 150 

each time point found only two instances of statistically significant differences (Supp. Table 1). 151 

Arid1a expression was reduced ~7% at 24 h post-differentiation and Actl6a expression was 152 

increased ~27% at 48 h post-differentiation. We conclude that PFI-3 treatment had essentially no 153 

effect on the expression of the genes encoding mSWI/SNF subunits. 154 

Inhibition of bromodomain function affected the expression of about 50% of the total genes 155 

identified as expressed over the time course of the experiment (Fig 3a). The number of DEGs due 156 

to bromodomain inhibition increased as a function of differentiation (Fig 3b). The total number of 157 

.CC-BY-NC 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted September 1, 2020. . https://doi.org/10.1101/2020.08.25.267666doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.25.267666
http://creativecommons.org/licenses/by-nc/4.0/


 8 

DEGs for proliferating cells (GM) and differentiating cells at 24h or 48h post-differentiation (DM 158 

24h and DM 48h) were 3144 (up 2216; down 928), 4675 (up 2878; down 1797) and 5261 (up 159 

3105; down 2156), respectively (Supp. Table 2). Gene expression at DM 24h and DM 48h was 160 

strongly correlated with 2359 common DEGs as compared to about 1634 common DEGs between 161 

GM and DM 24h. There were 899 genes that were differentially expressed at all timepoints. Gene 162 

ontology (GO) analysis was performed on DEGs to cluster genes into function-based categories 163 

(48, 49) and the complete results are listed in Supp. Table 3.  GO analysis of genes downregulated 164 

at DM 48h showed that the top 10 biological process categories were related to skeletal muscle 165 

contraction and skeletal muscle tissue development (Fig 3c; Supp. Table 3). This is in agreement 166 

with our experimental results, thus identifying the importance of bromodomain function in 167 

myogenesis. The top 10 categories from GO analysis of genes upregulated at DM 48h were related 168 

to cell proliferation (Fig 3d; Supp. Table 3), which indicated altered proliferation due to PFI-3-169 

induced bromodomain inhibition. The promoters of the differentially expressed genes were also 170 

analyzed using the HOMER motif enrichment software (49). Sequences 1kb upstream of the 171 

transcription start sites were searched for presence of known consensus motifs (Supp. Table 4). 172 

The analysis revealed that promoters of genes downregulated due to PFI-3 treatment were 173 

significantly enriched in motifs corresponding to muscle specific transcription factors from the 174 

MEF and MRF families. (Fig 3c; Supp. Table 4). In the case of upregulated genes, HOMER 175 

analysis identified enrichment of motifs known to be bound by E2F family, NFY, KLF5 and Sp1 176 

transcription factors (Fig 3d; Supp. Table 4). E2F and KLF5 TF families are known to play key 177 

role in regulation of cell proliferation and differentiation (50–52). Thus, PFI-3 induced 178 

bromodomain inhibition affects expression of genes which are involved in regulation of cell 179 

proliferation and skeletal muscle differentiation. 180 
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PFI-3 treatment blocked cell-cycle exit of C2C12 cells induced for differentiation   181 

Cell cycle exit is prerequisite for cellular differentiation to proceed in a number of cell types (53–182 

55). Results from the GO analysis of upregulated genes at DM 48h indicated that inhibition of 183 

bromodomain function may interfere with cell cycle exit. To experimentally address the 184 

requirement of mSWI/SNF bromodomain function in cell cycle exit, a BrdU (5-bromo-185 

deoxyuridine) incorporation assay was performed with samples treated with or without PFI-3 (Fig 186 

4a). Confocal microscopy analysis showed that cells treated with PFI-3 continued to incorporate 187 

BrdU even after the control cells showed no further incorporation, indicating a partial inability to 188 

exit cell cycle. Quantification of these images is shown in Fig 4b. Increased mRNA expression of 189 

cyclin A2, cyclin B1, cyclin D1, and cyclin D2 in PFI-3 treated samples from DM 48h as compared 190 

to DMSO controls further correlates with continued cell cycle (Fig 4c). These results show that 191 

bromodomain inhibition allows some of the myoblasts to overcome the signals to exit cycle that 192 

are normally provided by the low mitogen media and by contact inhibition. Thus, PFI-3 induced 193 

bromodomain inhibition may be affecting two aspects of myogenesis: timely exit from the cell 194 

cycle and the expression of myogenic genes. 195 

BAF180 is dispensable for C2C12 myoblast differentiation 196 

The composition of mSWI/SNF complexes is variable depending on function, cell-type and 197 

context. Every functional mSWI/SNF complex contains either the BRG1 or the BRM ATPase, 198 

while one major sub-class of mSWI/SNF complexes also contains BAF180 (10, 13). Thus, PFI-3 199 

treatment affects all mSWI/SNF complexes. BRG1 and BRM have been shown to be required for 200 

skeletal muscle differentiation (25, 26, 28, 30, 56, 57), but the requirement for BAF180 in this 201 

process has not been evaluated.  202 
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We knocked down BAF180 using siRNA. C2C12 cells depleted for BAF180 were induced for 203 

differentiation alongside cells with scrambled siRNA treatment (Fig 5a, 5b). The cells showed no 204 

phenotypic defect and differentiated normally. This result suggests that BAF180 may be 205 

dispensable for myogenesis and implies that PFI-3 induced inhibition of myoblast differentiation 206 

is mediated through inactivation of BRG1 and/or BRM bromodomain function. 207 

Gene targets of PFI-3 inhibition of mSWI/SNF bromodomains predominantly overlap with 208 

targets of BRG1 knockdown during myogenesis 209 

The importance of BRG1 and BRM in skeletal muscle differentiation has been shown previously 210 

by multiple groups. These studies have looked at muscle-specific gene expression profiles and 211 

promoter binding of selected mSWI/SNF subunits on myogenic regulatory sequences. In a recently 212 

published study, the authors performed siRNA-mediated knockdown of BRG1 in C2C12 cells 213 

differentiated for 48h followed by RNA-sequencing analysis (58). We compared the siBRG1 214 

dataset from this study with our RNA-sequencing dataset generated from PFI-3 treated C2C12 215 

cells differentiated under similar conditions (Fig 6a). The rationale behind this comparison was to 216 

get an understanding of the relative importance of the BRG1 bromodomain. The analysis showed 217 

that 46% of the gene targets downregulated due to PFI-3 treatment overlapped with downregulated 218 

genes in the siBRG1 dataset (Fig 6a). Similarly, 46% of the upregulated genes due to PFI-3 219 

inhibition were common with upregulated genes from siBRG1 dataset. The results show that a 220 

subset of BRG1-dependent gene expression in differentiating myoblasts requires bromodomain 221 

function. GO analysis of the common overlapping genes was conducted. Common downregulated 222 

genes belonged to muscle differentiation related processes while the common upregulated targets 223 

fell into cell-cycle related categories. (Fig 6a-b; Supp. Table 5). Promoters of the common 224 

upregulated and downregulated genes were also analyzed using HOMER to search for the presence 225 
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of known consensus motifs within 1kb upstream of their TSS (Fig 6a-b; Supp. Table 5). Promoters 226 

of upregulated genes contained motifs known to be bound by E2F, KLF, NFY and Sp1 TF families 227 

while those of downregulated genes were enriched for motifs corresponding to MEF and MRF 228 

muscle-specific transcription factor families (Fig 6a-b; Supp. Table 5). Thus, the results from the 229 

GO and HOMER motif enrichment analyses of overlapping genes and their promoters are similar 230 

to those from PFI-3 treatment as shown in Fig 3c-d and therefore point towards a crucial role 231 

played by BRG1 bromodomain in skeletal muscle differentiation and cell cycle regulation. 232 

We examined the genes that were dependent on BRG1 for expression but independent of PFI-3-233 

mediated inhibiton of bromodomain function (Supp. Fig 3; Supp. Table 6). Genes that are up- and 234 

down-regulated predominantly represented targets involved in metabolic processes and do not 235 

include genes that control skeletal muscle differentiation or control of cell cycle. This suggests 236 

that bromodomain-dependent regulation of gene expression is critical for myogenesis. This result 237 

also is consistent with prior studies showing that ATPase domain function is required for BRG1-238 

mediated regulation of metabolism (59, 60) and that PFI-3 treatment did not affect cancer cell 239 

proliferation dependent on BRG1 and/or BRM (40, 60). 240 

Microarray analysis of gene expression in C2C12 cells upon siRNA-mediated knockdown of 241 

BRG1 or BRM has also been done in a prior study by Albini et. al (30). Despite the difference in 242 

methodologies, we overlapped the DEGs from that study with our RNA-seq data from PFI-3 243 

treated C2C12 cells at comparable timepoints (48h post-differentiation) to evaluate if the outcome 244 

from this comparison is in consonance with the previous results. The analysis showed that more 245 

than one-third of the genes identified by Albini et al. as unique BRG1 targets overlapped with 246 

differentially expressed genes from our PFI-3 RNA-seq dataset (Supp Fig 4a). Upon looking 247 

individually at upregulated and downregulated targets uniquely regulated by BRG1, there was a 248 
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39% and 34% overlap, respectively (Supp Fig 4b). These common overlapping target genes were 249 

then characterized using GO analysis (Supp Fig 4a-b). Upregulated genes fell into cell-cycle 250 

related categories, and downregulated genes belonged to muscle differentiation related categories 251 

(complete analysis in Supp. Table 7). This is in agreement with the overall results from PFI-3 252 

treatment indicating the importance of active bromodomain for BRG1 function. Of the genes 253 

identified by Albini et al. as unique BRM targets, only about 20% were common with PFI-3 DEGs 254 

(Supp Fig 4b). These numbers show that more genes may be regulated by the BRG1 bromodomain 255 

as compared to the BRM counterpart. Albini et al. also identified a set of genes that were 256 

coregulated by both BRG1 and BRM. About 32% of these upregulated targets and 16% of the 257 

downregulated targets were found in the corresponding list of differentially expressed genes due 258 

to PFI-3 induced bromodomain inhibition (Supp Fig 4b; Supp. Table 7). This comparative analysis 259 

further confirms that both BRG1 and BRM bromodomains play a role in skeletal myogenesis. 260 

PFI-3 inhibition of mSWI/SNF bromodomains decreased binding of BRG1 and BRM to 261 

target gene promoters. 262 

BRG1-containing mSWI/SNF complexes are recruited to regulatory regions of myogenic genes 263 

upon induction of muscle differentiation (25, 26, 29, 30, 61, 62). This step is required to induce 264 

remodeling of chromatin at myogenic gene loci, thus allowing activation of muscle-specific gene 265 

expression.  266 

We performed ChIP experiments to determine whether the occupancy of BRG1 was affected at 267 

the myogenic gene regulatory regions in response to bromodomain inhibition by PFI-3. As 268 

expected, BRG1 occupancy at myogenic regulatory regions increased as a function of 269 

differentiation in DMSO-treated samples (Fig 7a). However, BRG1 occupancy at the tested 270 

regulatory sequences was partly inhibited in PFI-3 treated cells. This loss of binding correlates 271 
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with the decreased expression of these genes as seen in previous results (Fig. 2). We also looked 272 

at binding of BRG1 and BRM on cyclin D1 and cyclin D2 promoters. It is known that in C2C12 273 

myoblasts differentiated for 48h, BRM binding to the cyclin D1 gene promoter is crucial for its 274 

repression and cell-cycle exit (30). In that study, the authors showed that the expression of cyclin 275 

D1 was co-regulated by both BRG1 and BRM during the later stages of differentiation (30). In 276 

MCF-7 cells, BRG1 has been shown to bind to cyclin D1 promoter and regulate its expression 277 

(63). In PFI-3 treated C2C12 cells, chromatin IPs at the cyclin D1 promoter showed a decrease in 278 

occupancy of BRM and BRG1 (Fig 7b). Similarly, we saw a significant decrease in binding of 279 

BRG1 and BRM at the cyclin D2 promoter due to PFI-3 treatment. These results show that the 280 

bromodomain function of BRG1 and BRM contributes to their binding at target gene promoters.  281 

 282 

DISCUSSION 283 

Bromodomains in mSWI/SNF proteins 284 

Bromodomains are a conserved structural motif found in only 46 human proteins, and they are 285 

classified into eight families (38). Bromodomains bind to acetylated lysines, which facilitates 286 

protein-protein interactions (37). The ability of bromodomains to target proteins to acetylated 287 

nucleosomes containing acetylated histones has been predicted to be a mechanism by which 288 

chromatin epigenetic modifications are read, thereby enabling translation of the histone mark via 289 

the bromodomain protein or via  proteins associated with the bromodomain-containing protein (37, 290 

64, 65).  Family VIII bromodomains include the 6 bromodomains found in the N-terminal portion 291 

of the BAF180 protein, the bromodomains present in the BRG1 and BRM ATPases, and the 292 

bromodomain found in the histone lysine N-methyltransferase ASH1L (38). 293 

 294 
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Work to date on mSWI/SNF bromodomains has consisted of structural analyses (66–70), in vitro 295 

studies of bromodomain binding to histones, DNA and nucleosomes (67, 70–74) and a limited 296 

number of functional analyses in higher eukaryotes (75, 76). Of particular note, deletion of the 297 

bromodomain in Drosophila BRM, which is the only SWI/SNF ATPase, had no effect on 298 

developing or adult flies (77). In human cells, reconstitution of BRG1-deficient tumor cells with 299 

wildtype or mutant versions of BRG1 determined that sequences C-terminal to the ATPase 300 

domain, which includes the bromodomain, were not required for BRG1-mediated co-activation 301 

of transcription by the glucocorticoid receptor (78). Similarly, BRG1 containing a bromodomain 302 

mutation was capable of co-activating myocardin to promote smooth muscle-specific gene 303 

expression (79). However, the BRG1 bromodomain directly contributes to the ability of 304 

Repressor Element 1-silencing Transcription Factor (REST) to bind chromatin and repress target 305 

genes (80). Mutation of each of the six BAF180 bromodomains revealed that four of the six 306 

promoted tumor suppressor function, gene regulation, and chromatin affinity in clear cell renal 307 

cell carcinoma cells (81). Other work showed that the 4th bromodomain of BAF180 mediated 308 

interaction with acetylated p53, which promotes p53 binding to and transcriptional activation of 309 

its target promoters (82). Thus, the requirement for functional mSWI/SNF protein 310 

bromodomains is variable. It may be cell-type dependent as well.  Here we demonstrate that the 311 

BRG1 and/or BRM bromodomains, but not the BAF180 bromodomains, contribute to myogenic 312 

differentiation. Both BRG1 and BRM are required for myogenic differentiation; this work is the 313 

first to identify a contribution to myogenesis by any domain other than the ATPase domain. The 314 

work further supports the idea of context-dependent requirements for mSWI/SNF bromodomain 315 

functions. 316 

 317 
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Use of PFI-3 to probe biological function of mSWI/SNF subunits containing bromodomains 318 

Efforts to identify pharmacological inhibitors of bromodomains identified salicylic acid as a 319 

specific interactor of BRG1, BRM, and BAF180 bromodomains (41, 83).  This led to a series of 320 

structure-guided design steps that resulted in the PFI-3 inhibitor that is specific for the second and 321 

fifth bromodomain of BAF180 and the bromodomains of BRG1 and BRM (41, 42).   322 

 323 

To date PFI-3 has been used to probe biological function in a number of contexts.  Because BRG1 324 

and other subunits of the mSWI/SNF enzyme have been shown to be required for proliferation of 325 

some cancer cells (84–86), PFI-3 was tested for inhibitory effects on cancer cell proliferation, with 326 

no effect observed on many different cancer cell types, including the NCI-60 tumor cell panel (40, 327 

41, 87). These results demonstrate that mSWI/SNF bromodomains are not required for cancer cell 328 

proliferation. An inhibitory effect of PFI-3 was observed in PTEN-depleted prostate cancer cells 329 

in culture, in xenografts and in PTEN deficient mouse model susceptible to prostate cancer (88). 330 

PTEN is a tumor suppressor that normally regulates the AKT/PKB signaling pathway (89). Thus, 331 

the importance of mSWI/SNF bromodomains, and specifically, the BRG1 bromodomain, is 332 

enhanced in the absence of PTEN and inhibition of AKT/PKB signaling, suggesting a complex 333 

mode of regulation of mSWI/SNF protein bromodomain function. PFI-3 treatment increased the 334 

accessibility of an mSWI/SNF-repressed promoter and its gene expression (90). In these and other 335 

studies, PFI-3 altered both gene expression patterns dependent on mSWI/SNF bromodomain-336 

containing proteins and the cellular and organismal phenotypes controlled by those genes (87, 88, 337 

91–96). The data indicate that the pleiotropic effects of PFI-3 and inhibition of mSWI/SNF 338 

bromodomains links to the ability of the chromatin remodeling enzyme to modulate gene 339 

expression. 340 
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 341 

In the realm of tissue specification, PFI-3 treatment caused a loss of “stemness” and promoted 342 

differentiation of ESCs and trophoblast and neural stem cells in the absence of differentiation 343 

signaling (41, 97). In other contexts, PFI-3 inhibited differentiation, blocking the ability of 344 

myoblasts and pre-adipocytes to form myotubes and adipocytes, respectively, in the presence of 345 

differentiation signaling (42). In this report, we investigated the mechanisms responsible for the 346 

inhibitory effects of PFI-3 on myogenesis. PFI-3 treatment affected bromodomain function of 347 

BRG1 and BRM, but BAF180, as BAF180 was dispensable for differentiation. BRG1/BRM 348 

bromodomain function was required for appropriate regulation of cell cycle withdrawal and 349 

initiation of the myogenic gene expression program, with mis-regulation of a subset of the genes 350 

regulated by BRG1 and BRM.  Deficient gene regulation was linked to the partial inhibition of the 351 

ability of BRG1 and BRM to bind to target gene regulatory sequences, reflecting a necessary 352 

contribution of these bromodomains to promote interaction of the mSWI/SNF enzymes with 353 

chromatin. 354 

 355 

BAF180 is dispensable for myogenesis 356 

mSWI/SNF complexes are a family of enzyme complexes marked by diversity of subunit 357 

composition (6, 11, 98). Initial descriptions of mSWI/SNF complexes reported two separable 358 

biochemical fractions that showed ATP-dependent chromatin remodeling activity (8–10). These 359 

complexes have become known as BAF (BRG1/BRM-associated factors) and PBAF 360 

(Polybromo-associated BAF), the latter taking its name from the presence of the BAF180 protein 361 

that is specific to this complex. However, both BAF and PBAF complexes themselves are merely 362 

.CC-BY-NC 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted September 1, 2020. . https://doi.org/10.1101/2020.08.25.267666doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.25.267666
http://creativecommons.org/licenses/by-nc/4.0/


 17 

separable groups of complexes that contain both shared and unique subunits (99, 100). A third 363 

family of complexes, called ncBAF (noncanonical BAF) was identified more recently (13, 101). 364 

 365 

Although there are many subtypes of functional mSWI/SNF complexes in the cell, all of them 366 

necessarily have at least one of the proteins from the family VIII of bromodomains (102). BAF 367 

and ncBAF complexes contain either BRG1 or BRM, while PBAF complexes contain BRG1 and 368 

BAF180 (13). BAF180 has been implicated in DNA damage repair (103, 104) and is also 369 

required for cardiac development (105, 106); knockout in mice caused severe hypoplastic 370 

ventricle development and trophoblast placental defects (105). However, adult mice with 371 

BAF180 depletion were phenotypically normal except for a hematopoietic stem cell defect 372 

observed in aged mice (107). Similarly, BAF180 shows tumor-suppressive properties in some 373 

but not all cancer cell lines (107–111). These findings are consistent with context-specific 374 

requirements for the BAF180 protein. 375 

 376 

In our work, we used siRNA-mediated knockdown to show that BAF180 is dispensable for 377 

skeletal muscle differentiation. This suggests that the PBAF family of mSWI/SNF complexes are 378 

also dispensable in this differentiation program. Although there are many reports characterizing 379 

the requirement for mSWI/SNF complexes in myogenesis, focus has been limited to the two 380 

ATPase subunits, to BAF47/INI1, which is shared by BAF and PBAF complexes, and to the 381 

BAF60 subunit that is shared by all subfamilies of mSWI/SNF complexes (25–27, 29–31, 56, 57, 382 

112–125). A prior report documented the binding of BAF250A to myogenic promoters (115), 383 

perhaps implicating BAF complexes as the relevant mSWI/SNF enzyme subfamily for myogenic 384 

differentiation, but the requirement for BAF250A was not evaluated. Nevertheless, a requirement 385 
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for specialized complexes for specific gene regulation events is one of the main hypotheses for 386 

existence of diverse families of mSWI/SNF complexes. 387 

 388 

BRG1 and BRM bromodomain function contribute to the regulation of myogenic 389 

differentiation 390 

BRG1 and BRM contribute to the activation of the myogenic gene expression program and BRM 391 

contributes to the cell cycle arrest of myoblasts that precedes differentiation (25–30, 56). Inhibition 392 

of the mSWI/SNF bromodomains by PFI-3 recapitulated these findings, indicating that the 393 

bromodomains of BRG1 and BRM are needed to both regulate cell cycle exit and for the initiation 394 

of tissue-specific gene expression. RNA-seq analysis of PFI-3 treated cells provided evidence of 395 

global disruption of the regulation of cell cycle exit and the initiation of myogenic gene expression. 396 

A recently published RNA-seq study investigating the role of chromatin remodeling in skeletal 397 

myogenesis performed knockdown of BRG1 and evaluated gene expression at timepoints 398 

comparable with our study (58). Comparison of this dataset with ours identified a large overlapping 399 

subset of gene targets involved in cell cycle exit and myogenesis indicating that BRG1 400 

bromodomain plays a crucial role in regulation of BRG1-dependent events in skeletal muscle 401 

differentiation.  402 

Additionally, prior microarray-based studies of myogenic gene expression upon BRG1 and BRM 403 

knockdown also identified these processes as being BRG1- and BRM-dependent (30).  Despite the 404 

differences in platforms, we  integrated the two datasets. There was a considerably greater overlap 405 

between PFI-3 affected genes and genes mis-regulated by BRG1 knockdown than there was 406 

between PFI-3 affected genes and genes mis-regulated by BRM knockdown. This may suggest 407 
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that a greater percentage of genes that require BRG1 are also dependent on the BRG1 408 

bromodomain than is true for the set of genes that require BRM. 409 

 410 

Regardless, our ChIP experiments demonstrated that bromodomain inhibition resulted in a 411 

decreased ability of BRG1 to bind to genes activated during the myogenic differentiation protocol 412 

and a decreased ability of BRG1 and BRM to bind to genes controlling cell cycle. The chromatin 413 

interacting properties of the BRG1 and BRM bromodomains therefore likely contribute to gene 414 

expression. The principles determining the variable requirements for BRG1, BRM and BAF180 415 

bromodomains in different cellular contexts remain to be investigated. However, many of the 416 

mSWI/SNF subunits have additional domains that could promote chromatin interaction. For 417 

instance, BRG1 and BRM proteins have AT hooks, BAF180 and the BAF57 protein have an HMG 418 

box-like domain, the ARID1A/1B and ARID2 proteins have ARID domains that may mediate 419 

nucleic acid interactions, and BRD7 and BRD9 also have bromodomains. The requirement for any 420 

of these domains may be dependent on the protein makeup of the particular mSWI/SNF complex 421 

and the presence or absence of these other domains. Such a scenario suggests that these largely 422 

non-sequence specific DNA-binding domains function in an additive or cooperative manner to 423 

help facilitate chromatin interactions and remodeling events. Additional characterization of the 424 

putative chromatin interactions domains in the context of differentiation will be necessary to 425 

determine whether they are required and act in concert to promote mSWI/SNF interaction with 426 

chromatin and function. 427 

 428 

MATERIALS AND METHODS 429 

Antibodies and Chemicals 430 

.CC-BY-NC 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted September 1, 2020. . https://doi.org/10.1101/2020.08.25.267666doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.25.267666
http://creativecommons.org/licenses/by-nc/4.0/


 20 

Antibodies were purchased from Santa Cruz Biotech, USA (anti-BRG1, sc-17796; anti-BrdU, sc-431 

32323). Myosin Heavy chain antibody (#MF20) was purchased from the Developmental Studies 432 

Hybridoma Bank, University of Iowa, USA. BRM antisera was described previously (126). Lysis 433 

buffers for ChIP assays were purchased from Cell Signaling Technology, USA (SimpleChIP® 434 

Enzymatic Cell Lysis Buffers A & B, 14282; SimpleChIP® Chromatin IP Buffers, 14231). 435 

Dulbecco’s modified Eagle's medium (DMEM) was purchased from ThermoFisher Scientific 436 

(#11965118).  437 

Cell culture 438 

C2C12 cells were purchased from ATCC (Manassas, VA) and maintained at sub-confluent 439 

densities in DMEM supplemented with 10% FBS and 1% penicillin/streptomycin in a humidified 440 

incubator at 37°C in 5% CO2.  441 

Mouse satellite cells were isolated from leg muscles of 2 week old C57BL6/J mice using Percoll 442 

sedimentation followed by differential plating as described previously (114). Mice were housed in 443 

the animal care facility at the University of Massachusetts Medical School and used in accordance 444 

with a protocol approved by the Institutional Animal Care and Use Committee (IACUC). 445 

For differentiation, cells at  70% confluency were switched to DMEM medium supplemented 446 

with 2% horse serum and 2 g/ml of bovine insulin (Sigma-Aldrich, St. Louis, MO). Where 447 

indicated, cells were pre-treated with DMSO or PFI-3 (Cayman Chemical, Ann Arbor, MI) for 448 

24h before inducing differentiation. PFI-3 was maintained during the course of the experiment at 449 

50M and the medium was replaced every 24 hours. 450 

siRNA transfection 451 

C2C12 cells were plated on 24-well plates in DMEM medium 24h before transfection.  Cells were 452 

transfected at 30-40% confluence using the Lipofectamine 2000 (Invitrogen) reagent with 50 nM 453 
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siRNA SMARTpool ON-TARGETplus (Dharmacon, Scrambled non-targeting Pool # D-001810-454 

10-20 and Pbrm1 #L-044781-00-0005). 48h post-transfection, the cells were induced for 455 

differentiation and samples were harvested at indicated times for further analysis. 456 

Immunocytochemistry 457 

Cells were seeded on 22mm x 22mm size coverslips in 35mm dishes and were harvested after the 458 

indicated treatments at the specified timepoints. The samples were washed with PBS twice and 459 

then fixed with ice-cold fixative (2% formaldehyde and 0.2% glutaraldehyde in PBS) for 10 460 

minutes on ice. The cells were washed with PBS twice and permeabilized with ice-cold 461 

permeabilization buffer (0.2% Triton-X 100 in PBS) for 5 minutes on ice. Samples were then 462 

washed once with PBS and blocked using freshly prepared blocking reagent (5% BSA in PBS) for 463 

30 minutes at room temperature (RT). The cells were washed twice with PBS and incubated with 464 

primary antibody cocktail diluted to the desired concentration in blocking reagent (2% BSA in 465 

PBS) for 2 hours at room temperature. Post-incubation, samples were washed thrice with PBS 10 466 

minutes each to remove non-specific binding. Cells were then incubated with fluorophore-467 

conjugated secondary antibody (1:100) and DAPI (2g/ml), both diluted in blocking reagent (2% 468 

BSA in PBS) for 45 minutes at RT followed by 3 washes with PBS to remove non-specific staining. 469 

The stained cells on coverslips were then inverted-mounted on glass slides in 70% glycerol and 470 

the sides were sealed with nail paint. Confocal imaging analysis was performed using Leica TCS 471 

SP5 II laser scanning confocal microscope and analyzed with Leica Lite software. 472 

Fusion Index 473 

For calculation of fusion index, cells were harvested at the specified timepoints after the indicated 474 

treatments and were immunostained with myosin heavy chain (MF20, DSHB) and DAPI (nuclear 475 

staining) as described above. The images were captured at 40X magnification using a Leica TCS 476 
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SP5 II laser scanning confocal microscope. Analysis was performed by scoring cells for number 477 

of nuclei and MHC staining. Fusion index was calculated as the percentage of nuclei/cells stained 478 

with myosin heavy chain as compared to total number of nuclei/cells (43). 479 

RIPA buffer Lysis  480 

Cells were harvested after the indicated treatments at specific timepoints and were washed twice 481 

with ice-cold PBS. After draining all residual PBS, cells were scraped into 1ml ice-cold PBS with 482 

1X protease inhibitor cocktail (Sigma Aldrich, P8340) and pelleted at 1500 X g for 5 minutes at 483 

4C. The pellets were lysed in 500ul RIPA buffer (50 mM Tris-HCl, pH7.4, 150 mM NaCl, 1mM 484 

EDTA, 1% NP-40 and 0.25% sodium deoxycholate) supplemented with 1X protease inhibitor 485 

cocktail (Sigma Aldrich, P8340). Samples were incubated on ice for 30 minutes and whole cell 486 

extracts were prepared by passing the lysed pellets through a 27-gauge needle at least 4-5 times. 487 

Samples were centrifuged at 14000 X g for 10 minutes at 4C and supernatants were collected. 488 

Western Blot Analysis 489 

Protein concentrations were determined using a PierceTM BCA protein assay kit (ThermoFisher 490 

Scientific, USA) according to the manufacturer’s protocol. Equal amounts of protein from each 491 

sample were aliquoted and mixed with 4X Laemmli Sample Buffer (BioRad) and boiled at 95C 492 

for 10 minutes. The samples were electrophoresed on denaturing SDS-polyacrylamide gels and 493 

transferred onto Immobilon-P PVDF membranes (Merck Millipore, USA). The membranes were 494 

then blocked using 5% non-fat milk in PBS for 30 minutes followed by overnight incubation at 495 

4C with primary antibody against protein of interest at the desired dilution in 2% non-fat milk 496 

prepared in PBS. This was followed by 3 washes with TBS containing 0.1% Tween-20 for 5 497 

minutes each at room temperature. The membranes were then incubated with HRP-conjugated 498 

anti-mouse or anti-rabbit secondary antibodies (1:2500, GE Healthcare Life Sciences) diluted in 499 
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2% non-fat milk prepared in PBS for 1 hour at RT followed by 3 washes with TBS containing 500 

0.1% Tween-20 for 5 minutes each at room temperature. Chemiluminescent detection was 501 

performed with ECL Plus (GE Healthcare Life Sciences) using an Amersham Imager 600 (GE 502 

Healthcare Life Sciences). Representative blots from 3 independent experiments are shown. Band 503 

signal intensities were quantified using ImageJ software (NIH) (127). 504 

RNA isolation and quantitative RT-PCR 505 

For RNA isolation, cells were grown in 35mm dishes and harvested after the indicated treatments 506 

at specified timepoints. The media were removed, and cells were washed twice with PBS before 507 

adding 1ml of Trizol (ThermoFisher) to each sample. RNA extraction was performed as per the 508 

manufacturer’s protocol. The final RNA pellet was resuspended in 50l nuclease-free water. RNA 509 

concentrations were quantified using a Nanodrop1000 spectrophotometer (ThermoFisher 510 

Scientific). cDNA was prepared using 2g of total RNA using Superscript III First Strand 511 

Synthesis Kit (Invitrogen) according to manufacturer’s protocol. 512 

For qRT-PCR, 15l reactions were prepared in duplicate for all desired samples using 1l each of 513 

forward and reverse primers (10M stocks) and 2l cDNA template, and the volume was brought 514 

to 7.5l using UltraPure distilled water. 7.5l of Fast SYBR Green 2X Master Mix (Applied 515 

Biosystems) was added to the reaction. The samples were run using the default protocol in 516 

QuantStudio 3 RT-PCR machine (Applied Biosystems). Fold-changes were calculated using the 517 

2−ΔΔCt method (128). Primer sequences are listed in Supp. Table 8.  518 

RNA-sequencing analysis 519 

For RNA sequencing, RNA samples were prepared as described above. Duplicate samples for each 520 

timepoint were evaluated for quality and concentration at the UMass Medical School MBCL 521 

Fragment Analyzer services. QC-approved samples were sent to BGI Americas Corporation for 522 
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library preparation and RNA sequencing (129). Libraries were sequenced using the BGISEQ-500 523 

platform and reads were filtered to remove adaptor-polluted, low quality and high content of 524 

unknown base reads. About 99% of the raw reads were identified as clean reads (~65M). Of these, 525 

about 70% of the reads were uniquely mapped to mouse reference genome mm10 using HISAT 526 

(130). Transcripts were reconstructed using StringTie (131), and novel transcripts were identified 527 

using Cufflinks (132). All transcripts were then combined and mapped to the mm10 reference 528 

transcriptome using Bowtie2 (133). Gene expression levels were calculated using RSEM (134). 529 

DEseq2 (135) and PoissonDis (136) algorithms were used to detect differentially expressed genes 530 

(DEG). GO analysis was performed on DEGs to cluster genes into function-based and pathway-531 

based categories (48, 49).  Motif analysis was performed using HOMER motif discovery software 532 

as described previously (49). For each differentially expressed gene, motif enrichment analysis 533 

was performed at promoters for locations up to 1 kb upstream of the TSS.  534 

BrdU incorporation and immunostaining 535 

Cell were grown on coverslips in 35mm dishes with the indicated treatments. The culture media 536 

was replaced with fresh media containing 10mM BrdU 30 minutes prior to harvesting to allow the 537 

cells in S-phase to incorporate the nucleoside analog. Harvested samples were fixed and 538 

permeabilized as described above for immunocytochemistry. For DNA hydrolysis, samples were 539 

then incubated with 1.2N HCl diluted in PBS for 1 hour at 37°C, followed by neutralization in 540 

0.1M sodium borate for 5 minutes at RT. The samples were washed with PBS thrice and 541 

immunostained as mentioned above. 542 

Chromatin Immunoprecipitation assay 543 
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Chromatin immunoprecipitation assays were performed as described previously (115). 544 

Quantification was performed using the fold enrichment method (2-(Ct sample – Ct IgG)) and shown as 545 

relative to a control region. Sequences of primers used for ChIP assays are listed in Supp. Table 8.  546 

Statistical analysis 547 

All quantitative data for gene expression and chromatin immunoprecipitation are shown as mean 548 

+/- the standard deviation of at least three independent biological replicates.  In the fusion index 549 

and BrdU incorporation assays, two independent experiments were performed in duplicate.  A 550 

minimum of 200 nuclei per sample were counted and the results were expressed as the mean of 551 

calculated fusion index +/- standard deviation. Statistical analyses were performed using Graphpad 552 

Prism8 Student’s t-test with two-tailed distribution and equal variance (Graphpad Prism Software 553 

Inc.).  Significance is displayed with *p<0.05, **p<0.01 and ***p<0.005. 554 

Data Availability 555 

The data from this RNA-seq study has been deposited in NCBI’s Gene Expression Omnibus and 556 

are accessible through GEO accession number GSE151218.  557 
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Figure Legends: 959 

 960 

Fig. 1 (a) Confocal (top, scale 5μm) and bright field (bottom, scale 20μm) images for C2C12 961 

myoblasts treated with DMSO or PFI-3 and stained for myosin heavy chain (green) and with 962 

DAPI (blue) at the indicated timepoints. (b) Quantification of fusion index. (c) Differentiated 963 

myoblasts at respective timepoints were analyzed for number of nuclei per myotube. *p<0.05, 964 

**p<0.01 and ***p<0.005 965 

 966 

Fig. 2 mRNA expression levels at the indicated timepoints for (a) the fusion regulator genes 967 

myomaker and myomixer and (b) the myogenic genes myogenin, muscle creatine kinase, myosin 968 

light chain 1, Caveolin 3 and Integrin 7α in C2C12 myoblasts treated with DMSO or PFI-3. 969 

Expression was normalized to a control gene (EEF1A1). 100% expression is defined as the 970 

timepoint at which maximal expression was observed. ns, not significant, *p<0.05, **p<0.01 and 971 

***p<0.005. (c) Representative western blot for MHC expression at the indicated times in 972 

C2C12 cells treated with DMSO or PFI-3. The indicated numbers are the pixel counts 973 

normalized to β-tubulin expression calculated using ImageJ.  974 

 975 

Fig. 3 (a) Heat maps showing results from RNA-seq analysis of PFI-3 treated C2C12 cells 976 

assayed while in the proliferative stage in growth media (GM) and while in differentiation media 977 

(DM) for 24h and 48h. (b) Venn diagram showing the number of genes affected at different 978 

timepoints. There were 572 differentially expressed genes (DEGs) in GM (blue), 1319 DEGs in 979 

DM 24h (peach) and 1681 DEGs in DM 48h (green). (c) GO analysis of downregulated genes at 980 

48h post induction of differentiation shows downregulation of muscle related genes. A HOMER 981 

.CC-BY-NC 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted September 1, 2020. . https://doi.org/10.1101/2020.08.25.267666doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.25.267666
http://creativecommons.org/licenses/by-nc/4.0/


 46 

motif search shows enrichment of motifs corresponding to muscle-specific transcription factor 982 

families. (d) GO analysis of upregulated genes at 48h post induction of differentiation shows 983 

upregulation of cell cycle related processes. A HOMER motif search shows enrichment of 984 

transcription factor motifs associated with cell cycle regulators.  985 

 986 

Fig. 4 (a) C2C12 cells treated with PFI-3 show continued BrdU incorporation after 36h and 48 h 987 

post-induction of differentiation as compared to control cells, scale 5 μm. (b) Quantification of 988 

confocal images for BrdU incorporation assay in DMSO or PFI-3 treated C2C12 cells at the 989 

indicated timepoints. (c) mRNA expression levels of cyclin A2, cyclin B1, cyclin D1, and cyclin 990 

D2 in C2C12 myoblasts treated with DMSO or PFI-3 for indicated timepoints. Expression was 991 

normalized to a control gene (EEF1A1). 100% expression is defined as the timepoint at which 992 

maximal expression was observed. ns, not significant, *p<0.05, **p<0.01 and ***p<0.005 993 

 994 

Fig. 5 (a) Western blot analysis showed siRNA-mediated silencing of endogenous BAF180 in 995 

proliferating C2C12 cells. A scramble siRNA (siScr) was used as a control. The indicated 996 

numbers are the pixel counts normalized to Laminβ expression calculated using ImageJ. (b) 997 

Representative images of myosin heavy chain staining in 48h and 96h differentiated cells 998 

transfected with the control or BAF180-targeting siRNAs. The cells were fixed and analyzed by 999 

immunofluorescence using an anti-myosin heavy chain mAb MF20 (green). The nuclei were 1000 

visualized by DAPI staining (blue). Scale bar, 20 µm. 1001 

 1002 

Fig. 6 Comparative analysis of RNA-seq datasets from BRG1 knockdown performed by Zhu et 1003 

al. (NAR, 2020) and from PFI-3 treatment. Venn diagrams represent DEGs in corresponding 1004 
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datasets. The overlap represents genes common to both datasets. GO and HOMER motif 1005 

enrichment analyses show biological process categories and motifs identified within 1kb 1006 

upstream of the TSS in the promoters of (a) common downregulated genes and (b) common 1007 

upregulated genes. 1008 

 1009 

Fig. 7 ChIP assays show decreased occupancy of BRG1 and BRM on regulatory regions of 1010 

target genes upon PFI-3 inhibition. (a) Bar plots for BRG1 occupancy on the myogenin promoter 1011 

(Myog P), myosin heavy chain promoter (MHCIIb P), creatine kinase promoter (Ckm P) and 1012 

creatine kinase enhancer (Ckm E) are shown. (b) Bar plots for BRG1 and BRM occupancies on 1013 

the cyclin D1 and cyclin D2 promoters. The values have been normalized to an IgG experimental 1014 

control. These values are also normalized for binding at a non-specific region. ns, not significant, 1015 

*p<0.05, **p<0.01 and ***p<0.005 1016 

 1017 

Fig. 8 Graphical summary showing the effects of PFI-3 induced bromodomain inhibition on 1018 

skeletal myogenesis. In normal conditions, BRG1/BRM with active bromodomains can bind to 1019 

promoters of target genes when muscle differentiation is induced. This in turn affects two 1020 

important aspects of skeletal myogenesis: cell cycle exit and the formation of differentiated 1021 

multinucleated myotubes. In the presence of PFI-3, BRG1 and BRM show reduced binding to 1022 

target gene promoters leading to continued cell-cycle and incomplete differentiation resulting in 1023 

shorter myotubes. 1024 
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Fig. 1 (a) Confocal (top, scale 5μm) and bright field (bottom, scale 20μm) images for C2C12 myoblasts treated with DMSO or 

PFI-3 and stained for myosin heavy chain (green) and with DAPI (blue) at the indicated timepoints. (b) Quantification of fusion 

index. (c) Differentiated myoblasts at respective timepoints were analyzed for number of nuclei per myotube. *p<0.05, **p<0.01 

and ***p<0.005
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Fig. 2 mRNA expression levels at the indicated timepoints for (a) the fusion regulator genes myomaker and myomixer and (b) 

the myogenic genes myogenin, muscle creatine kinase, myosin light chain 1, Caveolin 3 and Integrin 7α in C2C12 myoblasts 

treated with DMSO or PFI-3. Expression was normalized to a control gene (EEF1A1). 100% expression is defined as the 

timepoint at which maximal expression was observed. ns, not significant, *p<0.05, **p<0.01 and ***p<0.005. (c) Representative

western blot for MHC expression at the indicated times in C2C12 cells treated with DMSO or PFI-3. The indicated numbers are 

the pixel counts normalized to β-tubulin expression calculated using ImageJ. 
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Fig. 3 (a) Heat maps showing results from RNA-seq analysis of PFI-3 treated C2C12 cells assayed while in the proliferative 

stage in growth media (GM) and while in differentiation media (DM) for 24h and 48h. (b) Venn diagram showing the number of 

genes affected at different timepoints. There were 3144 differentially expressed genes (DEGs) in GM (blue), 4674 DEGs in DM 

24h (peach) and 5261 DEGs in DM 48h (green). (c) GO analysis of downregulated genes at 48h post induction of differentiation 

shows downregulation of muscle related genes. A HOMER motif search shows enrichment of motifs corresponding to muscle-

specific transcription factor families. (d) GO analysis of upregulated genes at 48h post induction of differentiation shows 

upregulation of cell cycle related processes. A HOMER motif search shows enrichment of transcription factor motifs associated

with cell cycle regulators. 
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Fig. 4 (a) C2C12 cells treated with PFI-3 show continued BrdU incorporation after 36h and 48h post-induction of differentiation as 

compared to control cells, scale 5 μm. (b) Quantification of confocal images for BrdU incorporation assay in DMSO or PFI-3 treated 

C2C12 cells at the indicated timepoints. (c) mRNA expression levels of cyclin A2, cyclin B1, cyclin D1, and cyclin D2 in C2C12 

myoblasts treated with DMSO or PFI-3 for indicated timepoints. Expression was normalized to a control gene (EEF1A1). 100% 

expression is defined as the timepoint at which maximal expression was observed. ns, not significant, *p<0.05, **p<0.01 and 

***p<0.005
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Fig. 5 (a) Western blot analysis showed siRNA-mediated silencing of endogenous BAF180 in proliferating C2C12 cells. A 

scramble siRNA (siScr) was used as a control. The indicated numbers are the pixel counts normalized to Laminβ expression 

calculated using ImageJ. (b) Representative images of myosin heavy chain staining in 48h and 96h differentiated cells 

transfected with the control or BAF180-targeting siRNAs. The cells were fixed and analyzed by immunofluorescence using an 

anti-myosin heavy chain mAb MF20 (green). The nuclei were visualized by DAPI staining (blue). Scale bar, 20 µm.
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DM 48h Downregulated DM 48h Upregulated
a b

Fig. 6 Comparative analysis of RNA-seq datasets from BRG1 knockdown performed by Zhu et al. (NAR, 2020) and from PFI-3 

treatment. Venn diagrams represent DEGs in corresponding datasets. The overlap represents genes common to both datasets. 

GO and HOMER motif enrichment analyses show biological process categories and motifs identified within 1kb upstream of the 

TSS in the promoters of (a) common downregulated genes and (b) common upregulated genes. 
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Fig. 7 ChIP assays show decreased occupancy of BRG1 and BRM on regulatory regions of target genes upon PFI-3 inhibition. 

(a) Bar plots for BRG1 occupancy on the myogenin promoter (Myog P), myosin heavy chain promoter (MHCIIb P), creatine 

kinase promoter (Ckm P) and creatine kinase enhancer (Ckm E) are shown. (b) Bar plots for BRG1 and BRM occupancies on the 

cyclin D1 and cyclin D2 promoters. The values have been normalized to an IgG experimental control. These values are also 

normalized for binding at a non-specific region. ns, not significant, *p<0.05, **p<0.01 and ***p<0.005 
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Graphical Summary:

Fig. 8 Graphical summary showing the effects of PFI-3 induced bromodomain inhibition on skeletal myogenesis. In normal 

conditions, BRG1/BRM with active bromodomains can bind to promoters of target genes when muscle differentiation is 

induced. This in turn affects two important aspects of skeletal myogenesis: cell cycle exit and the formation of 

differentiated multinucleated myotubes. In the presence of PFI-3, BRG1 and BRM show reduced binding to target gene 

promoters leading to continued cell-cycle and incomplete differentiation resulting in shorter myotubes.
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