53 research outputs found

    Dissecting the turbulent weather driven by mechanical AGN feedback

    Get PDF
    Turbulence in the intracluster, intragroup, and circumgalactic medium plays a crucial role in the self-regulated feeding and feedback loop of central supermassive black holes. We dissect the three-dimensional turbulent `weather' in a high-resolution Eulerian simulation of active galactic nucleus (AGN) feedback, shown to be consistent with multiple multi-wavelength observables of massive galaxies. We carry out post-processing simulations of Lagrangian tracers to track the evolution of enstrophy, a proxy of turbulence, and its related sinks and sources. This allows us to isolate in depth the physical processes that determine the evolution of turbulence during the recurring strong and weak AGN feedback events, which repeat self-similarly over the Gyr evolution. We find that the evolution of enstrophy/turbulence in the gaseous halo is highly dynamic and variable over small temporal and spatial scales, similar to the chaotic weather processes on Earth. We observe major correlations between the enstrophy amplification and recurrent AGN activity, especially via its kinetic power. While advective and baroclinc motions are always sub-dominant, stretching motions are the key sources of the amplification of enstrophy, in particular along the jet/cocoon, while rarefactions decrease it throughout the bulk of the volume. This natural self-regulation is able to preserve, as ensemble, the typically-observed subsonic turbulence during cosmic time, superposed by recurrent spikes via impulsive anisotropic AGN features (wide outflows, bubbles, cocoon shocks). This study facilitates the preparation and interpretation of the thermo-kinematical observations enabled by new revolutionary X-ray IFU telescopes, such as XRISM and Athena.Comment: 20 pages, 14 figures, published in MNRAS, we updated 4 figures, the main results remain unaffecte

    Simulating the transport of relativistic electrons and magnetic fields injected by radio galaxies in the intracluster medium

    Full text link
    Radio galaxies play an important role in the seeding of cosmic rays and magnetic fields in galaxy clusters. Here, we simulate the evolution of relativistic electrons injected into the intracluster medium by radio galaxies. Using passive tracer particles added to magnetohydrodynamical adaptive-mesh simulations, we calculate the evolution of the spectrum of relativistic electrons taking into account energy losses and re-acceleration mechanisms associated with the dynamics of the intracluster medium. Re-acceleration can occur at shocks via diffusive shock acceleration, and in turbulent flows via second-order Fermi re-acceleration. This study confirms that relativistic electrons from radio galaxies can efficiently fill the intracluster medium over scales of several 100 Myr100 \rm ~Myr, and that they create a stable reservoir of fossil electrons that remains available for further re-acceleration by shock waves and turbulent gas motions. Our results also show that late evolution of radio lobes and remnant radio galaxies is significantly affected by the dynamics of the surrounding intracluster medium. Here the diffusive re-acceleration couples the evolution of relativistic particles to the gas perturbations. In the near future, deep radio observations, especially at low frequencies, can probe such mechanisms in galaxy clusters.Comment: 22 pages, 20 figures, A & A, in pres

    Erratum: Dissecting the turbulent weather driven by mechanical AGN feedback

    Get PDF
    This is an Erratum to the paper entitled ‘Dissecting the turbulent weather driven by mechanical AGN feedback’, which is published in MNRAS, 498(4), 4983–5002 (2020)

    Probing the origin of extragalactic magnetic fields with Fast Radio Bursts

    Get PDF
    The joint analysis of the Dispersion and Faraday Rotation Measure from distant, polarised Fast Radio Bursts may be used to put constraints on the origin and distribution of extragalactic magnetic fields on cosmological scales. While the combination of Dispersion and Faraday Rotation Measure can in principle give the average magnetic fields along the line-of-sight,in practice this method must be used with care because it strongly depends on the assumed magnetisation model on large cosmological scales. Our simulations show that the observation of Rotation Measures with greater than or equal to 1 − 10 rad/m2 in ∼ 10^2 − 10^3 Fast Radio Bursts will likely be able to discriminate between extreme scenarios for the origin of cosmic magnetic fields, independent of the exact distribution of sources with redshift. This represent a strong case for incoming (e.g. ALERT, CHIME) and future (e.g. with the Square Kilometer Array) radio polarisation surveys of the sky

    Bent it like frs: Extended radio agn in the cosmos field and their large-scale environment

    Get PDF
    A fascinating topic in radio astronomy is how to associate the complexity of observed radio structures with their environment in order to understand their interplay and the reason for the plethora of radio structures found in surveys. In this project, we explore the distortion of the radio structure of Fanaroff–Riley (FR)-type radio sources in the VLA-COSMOS Large Project at 3 GHz and relate it to their large-scale environment. We quantify the distortion by using the angle formed between the jets/lobes of two-sided FRs, namely bent angle (BA). Our sample includes 108 objects in the redshift range 0.08 < z < 3, which we cross-correlate to a wide range of large-scale environments (X-ray galaxy groups, density fields, and cosmic web probes) in the COSMOS field. The median BA of FRs in COSMOS at zmed∼0.9 is 167.5 +11.5/−37.5 degrees. We do not find significant correlations between BA and large-scale environments within COSMOS covering scales from a few kpc to several hundred Mpc, nor between BA and host properties. Finally, we compare our observational data to magnetohydrodynamical (MHD) adaptive-mesh simulations ENZO-MHD of two FR sources at z = 0.5 and at z = 1. Although the scatter in BA of the observed data is large, we see an agreement between observations and simulations in the bent angles of FRs, following a mild redshift evolution with BA. We conclude that, for a given object, the dominant mechanism affecting the radio structures of FRs could be the evolution of the ambient medium, where higher densities of the intergalactic medium at lower redshifts as probed by our study allow more space for jet interactions

    On the origin of Mega Radiohalos

    Full text link
    We present a first attempt to investigate the origin of radio emitting electrons in the newly discovered class of Mega Radiohalos in clusters of galaxies. We study the evolution of relativistic electrons accreted by the external regions of a simulated cluster of galaxy at high resolution, including the effect of radiative losses and turbulent re-acceleration acting on relativistic electrons. We conclude that turbulent re-acceleration is enough prolonged in time to produce a large reservoir of radio emitting electrons in the large regions illuminated by Mega Radiohalos observed by LOFAR.Comment: 6 pages, 4 figures, submitted to A&A Letter

    Life cycle of cosmic-ray electrons in the intracluster medium

    Full text link
    We simulate the evolution of relativistic electrons injected into the medium of a small galaxy cluster by a central radio galaxy, studying how the initial jet power affects the dispersal and the emission properties of radio plasma. By coupling passive tracer particles to adaptive-mesh cosmological MHD simulations, we study how cosmic-ray electrons are dispersed as a function of the input jet power. We also investigate how the latter affects the thermal and non-thermal properties of the intracluster medium, with differences discernible up to ∼\sim Gyr after the start of the jet. We evolved the energy spectra of cosmic-ray electrons, subject to energy losses that are dominated by synchrotron and inverse Compton emission as well as energy gains via re-acceleration by shock waves and turbulence. We find that in the absence of major mergers the amount of re-acceleration experienced by cosmic-ray electrons is not enough to produce long-lived detectable radio emissions. However, for all simulations the role of re-acceleration processes is crucial to maintain a significant and volume-filling reservoir of fossil electrons (γ∼103\gamma \sim 10^3) for several Gyrs after the first injection by jets. This is important to possibly explain recent discoveries of cluster-wide emission and other radio phenomena in galaxy clusters.Comment: 25 pages, 24 figures. A & A accepted, in pres

    Morphology of radio relics-II. Properties of polarized emission

    Get PDF
    Radio relics are diffuse radio sources in galaxy clusters that are associated with merger shock waves. Detailed observations of radio relics in total intensity and in polarization show complex structures on kiloparsec scales. The relation between the observed features and the underlying morphology of the magnetic field is not clear. Using 3D magneto-hydrodynamical simulations, we study the polarized emission produced by a shock wave that propagates through a turbulent medium that resembles the intracluster medium. We model the polarized synchrotron emission on the basis of diffusive shock acceleration of cosmic ray electrons. We find that the synchrotron emission produced in a shocked turbulent medium can reproduce some of the observed features in radio relics. Shock compression can give rise to a high polarization fraction at the shock front and a partial alignment of the polarization E-vectors with the shock normal. Our work confirms that radio relics can also be formed in an environment with a tangled magnetic field. We also discuss the effect of Faraday rotation intrinsic to the source, and how our results depend on the angular resolution of observations

    Constraints on the magnetic field in the inter-cluster bridge A399-A401

    Get PDF
    Galaxy cluster mergers are natural consequences of the structure formation in the Universe. Such events involve a large amount of energy (∼1063\sim 10^{63} erg) dissipated during the process. Part of this energy can be channelled in particle acceleration and magnetic field amplification, enhancing non-thermal emission of the intra- and inter-cluster environment. Recently, low-frequency observations have detected a bridge of diffuse synchrotron emission connecting two merging galaxy clusters, Abell 399 and Abell 401. Such a result provides clear observational evidence of relativistic particles and magnetic fields in-between clusters. In this work, we have used LOw Frequency ARray (LOFAR) observations at 144 MHz to study for the first time the polarized emission in the A399-A401 bridge region. No polarized emission was detected from the bridge region. Assuming a model where polarization is generated by multiple shocks, depolarization can be due to Faraday dispersion in the foreground medium with respect to the shocks. We constrained its Faraday dispersion to be greater than 0.10 rad m−2^{-2} at 95% confidence level, which corresponds to an average magnetic field of the bridge region greater than 0.46 nG (or 0.41 nG if we include regions of the Faraday spectrum that are contaminated by Galactic emission). This result is largely consistent with the predictions from numerical simulations for Mpc regions where the gas density is ∼300\sim 300 times larger than the mean gas density.Comment: 12 pages, 13 figures; accepted in A&
    • …
    corecore