4,455 research outputs found

    Addressing student models of energy loss in quantum tunnelling

    Full text link
    We report on a multi-year, multi-institution study to investigate student reasoning about energy in the context of quantum tunnelling. We use ungraded surveys, graded examination questions, individual clinical interviews, and multiple-choice exams to build a picture of the types of responses that students typically give. We find that two descriptions of tunnelling through a square barrier are particularly common. Students often state that tunnelling particles lose energy while tunnelling. When sketching wave functions, students also show a shift in the axis of oscillation, as if the height of the axis of oscillation indicated the energy of the particle. We find inconsistencies between students' conceptual, mathematical, and graphical models of quantum tunnelling. As part of a curriculum in quantum physics, we have developed instructional materials to help students develop a more robust and less inconsistent picture of tunnelling, and present data suggesting that we have succeeded in doing so.Comment: Originally submitted to the European Journal of Physics on 2005 Feb 10. Pages: 14. References: 11. Figures: 9. Tables: 1. Resubmitted May 18 with revisions that include an appendix with the curriculum materials discussed in the paper (4 page small group UW-style tutorial

    Demonstration of Coherent State Discrimination Using a Displacement Controlled Photon Number Resolving Detector

    Get PDF
    We experimentally demonstrate a new measurement scheme for the discrimination of two coherent states. The measurement scheme is based on a displacement operation followed by a photon number resolving detector, and we show that it outperforms the standard homodyne detector which we, in addition, proof to be optimal within all Gaussian operations including conditional dynamics. We also show that the non-Gaussian detector is superior to the homodyne detector in a continuous variable quantum key distribution scheme.Comment: 5 pages, 3 figure

    Understanding and Affecting Student Reasoning About Sound Waves

    Get PDF
    Student learning of sound waves can be helped through the creation of group-learning classroom materials whose development and design rely on explicit investigations into student understanding. We describe reasoning in terms of sets of resources, i.e. grouped building blocks of thinking that are commonly used in many different settings. Students in our university physics classes often used sets of resources that were different from the ones we wish them to use. By designing curriculum materials that ask students to think about the physics from a different view, we bring about improvement in student understanding of sound waves. Our curriculum modifications are specific to our own classes, but our description of student learning is more generally useful for teachers. We describe how students can use multiple sets of resources in their thinking, and raise questions that should be considered by both instructors and researchers.Comment: 23 pages, 4 figures, 3 tables, 28 references, 7 notes. Accepted for publication in the International Journal of Science Educatio

    The role of sign in students' modeling of scalar equations

    Full text link
    We describe students revising the mathematical form of physics equations to match the physical situation they are describing, even though their revision violates physical laws. In an unfamiliar air resistance problem, a majority of students in a sophomore level mechanics class at some point wrote Newton's Second Law as F = -ma; they were using this form to ensure that the sign of the force pointed in a direction consistent with the chosen coordinate system while assuming that some variables have only positive value. We use one student's detailed explanation to suggest that students' issues with variables are context-dependent, and that much of their reasoning is useful for productive instruction.Comment: 5 pages, 1 figure, to be published in The Physics Teache

    Discrimination of Optical Coherent States using a Photon Number Resolving Detector

    Full text link
    The discrimination of non-orthogonal quantum states with reduced or without errors is a fundamental task in quantum measurement theory. In this work, we investigate a quantum measurement strategy capable of discriminating two coherent states probabilistically with significantly smaller error probabilities than can be obtained using non-probabilistic state discrimination. We find that appropriate postselection of the measurement data of a photon number resolving detector can be used to discriminate two coherent states with small error probability. We compare our new receiver to an optimal intermediate measurement between minimum error discrimination and unambiguous state discrimination.Comment: 5 pages, 4 figure

    Electronic noise-free measurements of squeezed light

    Full text link
    We study the implementation of a correlation measurement technique for the characterization of squeezed light. We show that the sign of the covariance coefficient revealed from the time resolved correlation data allow us to distinguish between squeezed, coherent and thermal states. In contrast to the traditional method of characterizing squeezed light, involving measurement of the variation of the difference photocurrent, the correlation measurement method allows to eliminate the contribution of the electronic noise, which becomes a crucial issue in experiments with dim sources of squeezed light.Comment: submitted for publicatio

    Latitudinal variation of the solar photospheric intensity

    Get PDF
    We have examined images from the Precision Solar Photometric Telescope (PSPT) at the Mauna Loa Solar Observatory (MLSO) in search of latitudinal variation in the solar photospheric intensity. Along with the expected brightening of the solar activity belts, we have found a weak enhancement of the mean continuum intensity at polar latitudes (continuum intensity enhancement 0.10.2\sim0.1 - 0.2% corresponding to a brightness temperature enhancement of 2.5K\sim2.5{\rm K}). This appears to be thermal in origin and not due to a polar accumulation of weak magnetic elements, with both the continuum and CaIIK intensity distributions shifted towards higher values with little change in shape from their mid-latitude distributions. Since the enhancement is of low spatial frequency and of very small amplitude it is difficult to separate from systematic instrumental and processing errors. We provide a thorough discussion of these and conclude that the measurement captures real solar latitudinal intensity variations.Comment: 24 pages, 8 figs, accepted in Ap

    QPSK coherent state discrimination via a hybrid receiver

    Full text link
    We propose and experimentally demonstrate a near-optimal discrimination scheme for the quadrature phase shift keying protocol (QPSK). We show in theory that the performance of our hybrid scheme is superior to the standard scheme - heterodyne detection - for all signal amplitudes and underpin the predictions with our experimental results. Furthermore, our scheme provides the hitherto best performance in the domain of highly attenuated signals. The discrimination is composed of a quadrature measurement, a conditional displacement and a threshold detector

    Using resource graphs to represent conceptual change

    Full text link
    We introduce resource graphs, a representation of linked ideas used when reasoning about specific contexts in physics. Our model is consistent with previous descriptions of resources and coordination classes. It can represent mesoscopic scales that are neither knowledge-in-pieces or large-scale concepts. We use resource graphs to describe several forms of conceptual change: incremental, cascade, wholesale, and dual construction. For each, we give evidence from the physics education research literature to show examples of each form of conceptual change. Where possible, we compare our representation to models used by other researchers. Building on our representation, we introduce a new form of conceptual change, differentiation, and suggest several experimental studies that would help understand the differences between reform-based curricula.Comment: 27 pages, 14 figures, no tables. Submitted for publication to the Physical Review Special Topics Physics Education Research on March 8, 200

    Probabilistic Cloning of Coherent States without a Phase Reference

    Get PDF
    We present a probabilistic cloning scheme operating independently of any phase reference. The scheme is based solely on a phase-randomized displacement and photon counting, omitting the need for non-classical resources and non-linear materials. In an experimental implementation, we employ the scheme to clone coherent states from a phase covariant alphabet and demonstrate that the cloner is capable of outperforming the hitherto best-performing deterministic scheme. An analysis of the covariances between the output states shows that uncorrelated clones can be approached asymptotically. An intriguing feature is that the trade-off between success rate and achieved fidelity can be optimized even after the cloning procedure
    corecore