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We experimentally demonstrate a new measurement scheme for the discrimination of two coherent

states. The measurement scheme is based on a displacement operation followed by a photon-number-

resolving detector, and we show that it outperforms the standard homodyne detector which we, in

addition, prove to be optimal within all Gaussian operations including conditional dynamics. We also

show that the non-Gaussian detector is superior to the homodyne detector in a continuous variable

quantum key distribution scheme.
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According to the basic postulates of quantum mechan-
ics, perfect discrimination of nonorthogonal quantum
states is impossible. Suppose, for example, one is ran-
domly given one of two a priori known coherent states,
then there is no physical apparatus that with certainty can
identify which state was at hand due to the intrinsic non-
orthogonality of coherent states. This inability to perfectly
discriminate coherent states is the engine for uncondition-
ally secure communication via continuous variable quan-
tum key distribution (QKD) [1]. On the other hand, in order
to increase the secure key rate, optimized discrimination
strategies must be implemented. Optimized measurements
for coherent state discrimination are also of great use in
other quantum devices such as quantum computers [2] and
quantum repeaters [3].

The impossibility of perfectly discriminating quantum
state has therefore led to the fundamental problem of
finding measurement strategies for which the discrimina-
tion task is optimized. The two most well-known discrimi-
nation strategies are deterministic minimum error state
discrimination (MESD) and probabilistic unambiguous
state discrimination (USD) [4–8]. In an optimized MESD
measurement all measurement outcomes are kept and the
error rate is minimized, whereas in an optimized USD
measurement only conclusive measurement outcomes are
kept while the rate of inconclusive results is minimized.
Experimental realizations of such measurement strategies
have been pursued [9–14].

A combination of the two discrimination schemes—the
intermediate discrimination (ID) scheme—where one al-
lows for both erroneous and inconclusive results has also
been treated theoretically. More precisely, the minimal
probability of errors for a fixed probability of inconclusive
results has been derived for pure and mixed states in
Refs. [15,16], respectively. A well-known (however, non-
optimal) ID scheme is the postselection based homodyne
detector where the quadrature measurement outcomes are

favorably postselected. Such a measurement scheme has
been used to discriminate binary coherent states in quan-
tum key distribution [17–19] and also to discriminate noisy
nonclassical states for distillation [20–23] and to engineer
quantum state [24,25].
In this Letter, we first show theoretically that the post-

selection based homodyne detector is the optimal inter-
mediate discrimination strategy for binary coherent states
over all Gaussian measurement approaches (including
Gaussian transformations, homodyne detectors, and condi-
tional dynamics). Furthermore, we experimentally imple-
ment a non-Gaussian measurement strategy [based on a
displacement-controlled photon-number-resolving (PNR)
detector] that outperforms the optimal Gaussian strategy.
Finally, we show theoretically that by using the non-
Gaussian detector in replacement of the postselection
based homodyne detector in a continuous variable quan-
tum key distribution protocol, a substantial increase of the
secure key rate is expected.
Consider a binary alphabet of two pure and phase shifted

coherent states fj��i; j�ig occurring with the a priori
probabilities p1 and p2. The task of the receiver is to certify
whether the state was prepared in j��i or j�i using a
measurement described by the three-component positive

operator-valued measure (POVM) �̂i, i ¼ 1; 2; ?, where

�̂i > 0 and �̂1 þ �̂2 þ �̂? ¼ Î. An inconclusive result
will occur with the probability

pinc ¼ p1h��j�̂?j � �i þ p2h�j�̂?j�i; (1)

where h��j�̂?j��i (h�j�̂?j�i) represents the probability
of inconclusive results when j��i (j�i) was prepared.
Furthermore, the average error probability is given by

pE ¼ ðp1h��j�̂2j��i þ p2h�j�̂1j�iÞ=ð1� pincÞ; (2)

where h��j�̂2j��i (h�j�̂1j�i) represents the error
probability of mistakenly guessing j��i (j�i). An opti-
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mized intermediate detector has a minimal error probabil-
ity pE for a given probability of inconclusive results pinc.

An experimentally simple candidate for an intermediate
measurement is the homodyne detector measuring the
excitation quadrature followed by postselection of the out-
comes as illustrated in Fig. 1(a) [17–19]. The distribution
of the measurement outcomes is shown in Fig. 1(b) and is
divided into three regions associated with the three POVM
elements. If the measurement outcome is larger (smaller)
than a certain threshold value, B (�B), then we identify j�i
(j��i) (with errors); otherwise the outcomes are incon-
clusive. The trade-off between the error probability and the
probability of inconclusive results can be easily tuned by
the threshold value B.

In the following we prove that this measurement scheme
is the optimal strategy for realizing the intermediate mea-
surement within all possible Gaussian operations and con-
ditional dynamics (classical feedback or feedforward).
First we note that if the input alphabet as well as all
operations are Gaussian, conditional dynamics is useless
[26]. In our case, however, the input alphabet consisting
of an ensemble of two coherent states is non-Gaussian,
and thus we cannot discard conditional dynamics as an
option to improve the discrimination task. The POVM
consisting of noise-free Gaussian operations without
conditional dynamics is described by a set of opera-

tors f1� jc � ðu; vÞihc � ðu; vÞjg, where jc � ðu; vÞi ¼
D̂ðu; vÞŜð�Þj0i is a displaced squeezed state, � ¼ rei’ is
a complex squeezing parameter, and ðu; vÞ are quadratures
representing a measurement outcome [27]. The probability
distributions of detecting j��i with this POVM are

Pðu; vj � �Þ ¼ 1
� jh��jc � ðu; vÞij2 showing Gaussian sta-

tistics. Let us denote the likelihood ratio of two signals as

�1 ¼ p1Pðu;vj��Þ
p2Pðu;vj�Þ and �2 ¼ ��1

1 . According to the

Bayesian strategy [4], an optimal signal decision for the
fixed measurement is to guess j � �i for �1 � �B, j�i for
�2 � �B, and the inconclusive result otherwise, where�B

is the threshold. The error probabilities and the probabil-
ities of having inconclusive results for each signal are then

given by pð�Þ
e ¼ 1

2 erfc½
ffiffiffiffiffiffi

2a
p

�þ ln�B�lnðp1=p2Þ
4
ffiffi

2
p

�
�, where

pð�Þ
i ¼ pð�Þ

s � pð�Þ
e , pð�Þ

s ¼ 1
2 erfc½

ffiffiffiffiffiffi

2a
p

�� ln�B�lnðp1=p2Þ
4
ffiffi

2
p

�
�,

a ¼ 1þcosh2rþsinh2r cos’
2ðcosh2rþ1Þ , and � is assumed to be real and

positive for simplicity. Here we can find that the average

error probability pE ¼ ðp1p
ð�Þ
e þ p2p

ðþÞ
e Þ=ð1� pincÞ and

the inconclusive probability pinc ¼ p1p
ð�Þ
i þ p2p

ðþÞ
i are

simultaneously minimized with ’ ¼ 0 and r ! 1. It cor-
responds to an X-quadrature measurement, implying that
the optimal measurement with only Gaussian operations is
the homodyne detector with phase ’ ¼ 0.
Furthermore, any conditional operation is proven to be

useless by considering two Gaussian operations. The first
Gaussian operation on the input state includes a partial
measurement of the signal and generally outputs a mea-
surement outcome and a conditional output state. It was
shown that such a conditional state can always be trans-
formed into another mixture of coherent states �̂out ¼
p0
1ðdMÞj��0ih��0j þ p0

2ðdMÞj�0ih�0j, with real and posi-
tive �0, by an additional Gaussian operation which is
deterministic and independent of the partial measurement
outcome denoted by dM [27]. Since only the a posteriori
probabilities depend on dM, the optimal second operation
is independent of dM and given by a fixed homodyne
measurement (’ ¼ 0) as already shown. We therefore
conclude that any conditional dynamics is not useful in
the two-step measurement scenario. An extension of the
above conclusion to the multistep measurement scenario is
straightforward, which proves the optimality of the homo-
dyne detector within all possible Gaussian operations and
conditional dynamics [28].
Although the homodyne detector is optimal within all

Gaussian strategies, there exist non-Gaussian strategies
that outperform the homodyne detector. Our new, non-
Gaussian receiver is based on a displacement operation
Dð�Þ followed by a detection of the photon number [see
Fig. 1(c)] with which conclusions are made [29]. The
photon number distributions of the two possible coherent
states after displacement are shown in Fig. 1(d). For zero-
photon outcomes, we identify j��i (since the zero-photon
contribution from j��i is much larger than from j�i) and
associate the POVM, �̂1 ¼ j0ih0j. If the photon number
outcome n is larger than a certain threshold m, we identify

j�i with the POVM, �̂2 ¼ Î � �̂1 � �̂?; otherwise we

obtain inconclusive results described by the POVM, �̂? ¼
P

m
n¼1 jnihnj. To minimize the error rate the displacement

must be optimized (for details see [29]).

50-50

PNRD
S S

LO

else else
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D( )

T~1
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X

(c)(a)
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FIG. 1 (color online). (a) Schematics of the homodyne re-
ceiver. The signal (S) is interfered with a local oscillator (LO).
The photocurrents are subtracted resulting in a quadrature
measurement. (b) Marginal distribution of the two signal states
with intervals where the answers f�; ?;þg are guessed.
(c) Schematics of the photon-number-resolving (PNR) receiver.
The signal (S) is interfered with an auxiliary oscillator (AO).
Finally, the signal is measured by a photon-number-resolving
detector (PNRD). (d) Photon number distribution of two signal
states. In the examples, we assume a signal with j�j2 ¼ 0:24 and
a displacement of � ¼ 1.
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In Fig. 3(b) (gray lines) we compare our new detector
with the homodyne receiver by choosing the postselection
parameter B such that the rates of inconclusive results are
equal for both strategies, i.e., pinc;HD ¼ pinc;PNR. We find

that the displacement controlled PNR detector (solid lines)
surpasses the performance of the homodyne (HD) detector
(dashed lines) for all signal amplitudes.

We continue with a description of the experimental
realization of the two detector schemes. As shown in
Fig. 2(a) the setup consists of a preparation stage and
two different receiver stages. The signal states are gener-
ated in a polarization mode orthogonal to an auxiliary
mode: The field amplitude of the auxiliary mode is coher-
ently transferred into the signal polarization by means of an
electro-optical modulator (EOM). We carefully character-
ize the prepared signal and both detectors and verify that
the amount of excess noise stemming from the EOM is
miniscule [14]. Using a 50-50 beam splitter, two identical
signal states are directed to the two detection schemes. The
homodyne receiver records a quadrature value for each

signal pulse. Its quantum efficiency amounts to �hom ¼
85:8%, and the electronic noise level is more than 23 dB
below the shot noise level. The PNR receiver is composed
of a displacement operation (driven by an EOM and the
auxiliary mode) and a fiber coupled avalanche photodiode
(APD) operating in an actively gated mode, such that the
dead time of the device (50 ns) is much shorter than the
measurement time (800 ns) (which defines the duration of
the state). The APD therefore works as a primitive photon-
number-resolving detector [30]. The interference of the
signal and auxiliary oscillator is performed with an ex-
tinction ratio of about 1=700, and the total detection effi-
ciency of the displacement operation and the detection is
estimated to be �on=off ¼ 55%. A PC controls the prepa-

ration of the states as well as the displacement in the
PNR receiver by modulating the two EOMs. Simultane-
ously it acquires the homodyne and the APD detec-
tion outcomes during the pulse sequence. [The quadrature
values are derived by averaging 16 samples of homodyne
data (bandwidth 10 MHz), which is digitized with
20 megasamples=s. The detected temporal modes at both
receivers are therefore equal to a reasonable extent.] An
example of such a sequence is shown in Fig. 2(b). The
outcomes of the receivers are then divided into correct,
false, and inconclusive results.
In our experiment the PNR receiver is demonstrated for

m ¼ 0; . . . ; 2. We find that for any m the displacement can
be optimized such that the experimentally measured error
rates reach a minimum. The optimal displacement is higher
and the minimum error rate is lowered for increasing m.
The error rates for varying amplitudes are plotted in
Fig. 3(a). We find a maximal reduction of the error rate
by a factor of 3.5 going fromm ¼ 0 (deterministic scheme)
to m ¼ 2 (probabilistic scheme) at the signal j�j2 ¼ 0:47.
The corresponding penalty on the acceptance rates and the
comparison with the theoretical predictions are shown in
Fig. 3(b). In this figure the performance of the homodyne
detector is compared with the performance of the displace-
ment controlled PNR detector and it can be clearly seen
(especially form ¼ 1) that the latter non-Gaussian detector
outperforms the former Gaussian detector at several data
points.
In the final part of this Letter, we investigate the per-

formance of a continuous variable quantum key distribu-
tion scheme in which the standard homodyne detector is
replaced by an ideal displacement controlled PNR receiver
at the receiving station. We consider a binary coherent state
alphabet, a lossy channel (with no excess noise), and an
error correction scheme based on direct reconciliation [31].
For this scheme the secret key rate is G ¼ ð1� pincÞ�
ðIB � IEÞ with Bob’s information IB ¼ 1�HðperrÞ, and it
depends on the channel transmittance �, the signal ampli-
tude �, the displacement value �, and the threshold value
m. We calculate the key rate G as a function of the channel
transmittance � while optimizing the other parameters
(typically � 2 ½0:5; 1:5�). The result is shown in Fig. 3(c)

FIG. 2 (color online). (a) Scheme of the experimental imple-
mentation of the receivers in Figs. 1(a) and 1(c), where the
abbreviated components are a fiber mode cleaner (FMC), beam
splitters (BS, 50-50), a polarizing beam splitter (PBS), a piezo-
mounted mirror (PZT), a half wave plate (HWP), and a photon-
number-resolving detector (PNRD). (b) (top) Modulation pattern
of the electro-optical modulators in the state preparation (green
dots) and the displacement of the PNR receiver (red horizontal
line); (middle) simultaneously recorded quadrature measure-
ments; (bottom) detection events of the APD. Shaded areas
show inconclusive results for increasing postselection parame-
ters B and m.
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(solid curve). For comparison we also insert the key rate
for the standard homodyne detection based protocol
(dashed curve) [32]. We find that the new scheme is far
superior to the homodyne scheme by several orders of

magnitude, especially in the realistic case of high channel
attenuation.
In this Letter, we have demonstrated a receiver for

binary-encoded optical coherent states based on an opti-
mized displacement, a photon-number-resolving measure-
ment, and postselection of the photon number outcomes.
We compared this receiver scheme to the homodyne re-
ceiver, which we proved to be the optimal Gaussian re-
ceiver, and found that the performance of the PNR receiver
beats that of the homodyne receiver. The quantum effi-
ciency for both receivers is approaching unity due to rapid
development in this field. Consequently, we showed theo-
retically that by using an ideal version of the new receiver
in replacement of the standard homodyne receiver in a
continuous variable QKD protocol, superior performance
in terms of increased secure key rate is expected. QKD is
just one application among many others for which the PNR
receiver demonstrates superior performance in comparison
with a homodyne based scheme, and thus we believe that
our new detector will play a significant role in future
quantum information technologies.
The work has been supported by the EU project

COMPAS and Lundbeckfonden (R13-A1274).
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FIG. 3 (color online). (a) Error rates for the Kennedy receiver
(� ¼ �) and the PNR receiver with varying m and optimized
�opt. Error bars reflect the standard deviations of repeated

measurements, which are larger than the statistical errors.
Experimental data are compared to ideal receivers (dashed
lines). The experimental data have been corrected for the detec-
tor inefficiency in all figures. (b) Experimental error rates versus
acceptance rates with increasing signal amplitudes for the PNR
receiver and the homodyne (HD) receiver. For this comparison
the success rate of both schemes is fixed to the one, that is
theoretically reached by the PNR receiver. The theoretical pre-
dictions for the homodyne receiver (gray dashed line), the PNR
receiver (solid line), and the optimal intermediate measurement
(dot-dashed lines) are shown with statistical error bars. The new
receiver outperforms the homodyne receiver for several data
points. For details, see [28]. (c) (left-hand scale) Key rate G in
logarithmic scale as a function of the channel transmittance �
using the PNR receiver (solid curve) and the homodyne receiver
[31,32] (dashed curve); (right-hand scale) optimized threshold m
(dotted line). Photon number resolution for high photon number,
e.g., m ¼ 10, was demonstrated in [33].
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