5,126 research outputs found
Addressing student models of energy loss in quantum tunnelling
We report on a multi-year, multi-institution study to investigate student
reasoning about energy in the context of quantum tunnelling. We use ungraded
surveys, graded examination questions, individual clinical interviews, and
multiple-choice exams to build a picture of the types of responses that
students typically give. We find that two descriptions of tunnelling through a
square barrier are particularly common. Students often state that tunnelling
particles lose energy while tunnelling. When sketching wave functions, students
also show a shift in the axis of oscillation, as if the height of the axis of
oscillation indicated the energy of the particle. We find inconsistencies
between students' conceptual, mathematical, and graphical models of quantum
tunnelling. As part of a curriculum in quantum physics, we have developed
instructional materials to help students develop a more robust and less
inconsistent picture of tunnelling, and present data suggesting that we have
succeeded in doing so.Comment: Originally submitted to the European Journal of Physics on 2005 Feb
10. Pages: 14. References: 11. Figures: 9. Tables: 1. Resubmitted May 18 with
revisions that include an appendix with the curriculum materials discussed in
the paper (4 page small group UW-style tutorial
The intensity contrast of solar granulation: comparing Hinode SP results with MHD simulations
The contrast of granulation is an important quantity characterizing solar
surface convection. We compare the intensity contrast at 630 nm, observed using
the Spectro-Polarimeter (SP) aboard the Hinode satellite, with the 3D radiative
MHD simulations of V{\"o}gler & Sch{\"u}ssler (2007). A synthetic image from
the simulation is degraded using a theoretical point-spread function of the
optical system, and by considering other important effects. The telescope
aperture and the obscuration by the secondary mirror and its attachment spider,
reduce the simulated contrast from 14.4 % to 8.5 %. A slight effective defocus
of the instrument brings the simulated contrast down to 7.5 %, close to the
observed value of 7.0 %. A proper consideration of the effects of the optical
system and a slight defocus, lead to sufficient degradation of the synthetic
image from the MHD simulation, such that the contrast reaches almost the
observed value. The remaining small discrepancy can be ascribed to straylight
and slight imperfections of the instrument, which are difficult to model.
Hence, Hinode SP data are consistent with a granulation contrast which is
predicted by 3D radiation MHD simulations.Comment: 5 pages, 4 figures, to be published in A&
Using resource graphs to represent conceptual change
We introduce resource graphs, a representation of linked ideas used when
reasoning about specific contexts in physics. Our model is consistent with
previous descriptions of resources and coordination classes. It can represent
mesoscopic scales that are neither knowledge-in-pieces or large-scale concepts.
We use resource graphs to describe several forms of conceptual change:
incremental, cascade, wholesale, and dual construction. For each, we give
evidence from the physics education research literature to show examples of
each form of conceptual change. Where possible, we compare our representation
to models used by other researchers. Building on our representation, we
introduce a new form of conceptual change, differentiation, and suggest several
experimental studies that would help understand the differences between
reform-based curricula.Comment: 27 pages, 14 figures, no tables. Submitted for publication to the
Physical Review Special Topics Physics Education Research on March 8, 200
Kerncraft: A Tool for Analytic Performance Modeling of Loop Kernels
Achieving optimal program performance requires deep insight into the
interaction between hardware and software. For software developers without an
in-depth background in computer architecture, understanding and fully utilizing
modern architectures is close to impossible. Analytic loop performance modeling
is a useful way to understand the relevant bottlenecks of code execution based
on simple machine models. The Roofline Model and the Execution-Cache-Memory
(ECM) model are proven approaches to performance modeling of loop nests. In
comparison to the Roofline model, the ECM model can also describes the
single-core performance and saturation behavior on a multicore chip. We give an
introduction to the Roofline and ECM models, and to stencil performance
modeling using layer conditions (LC). We then present Kerncraft, a tool that
can automatically construct Roofline and ECM models for loop nests by
performing the required code, data transfer, and LC analysis. The layer
condition analysis allows to predict optimal spatial blocking factors for loop
nests. Together with the models it enables an ab-initio estimate of the
potential benefits of loop blocking optimizations and of useful block sizes. In
cases where LC analysis is not easily possible, Kerncraft supports a cache
simulator as a fallback option. Using a 25-point long-range stencil we
demonstrate the usefulness and predictive power of the Kerncraft tool.Comment: 22 pages, 5 figure
Discrimination of Optical Coherent States using a Photon Number Resolving Detector
The discrimination of non-orthogonal quantum states with reduced or without
errors is a fundamental task in quantum measurement theory. In this work, we
investigate a quantum measurement strategy capable of discriminating two
coherent states probabilistically with significantly smaller error
probabilities than can be obtained using non-probabilistic state
discrimination. We find that appropriate postselection of the measurement data
of a photon number resolving detector can be used to discriminate two coherent
states with small error probability. We compare our new receiver to an optimal
intermediate measurement between minimum error discrimination and unambiguous
state discrimination.Comment: 5 pages, 4 figure
Latitudinal variation of the solar photospheric intensity
We have examined images from the Precision Solar Photometric Telescope (PSPT)
at the Mauna Loa Solar Observatory (MLSO) in search of latitudinal variation in
the solar photospheric intensity. Along with the expected brightening of the
solar activity belts, we have found a weak enhancement of the mean continuum
intensity at polar latitudes (continuum intensity enhancement
corresponding to a brightness temperature enhancement of ).
This appears to be thermal in origin and not due to a polar accumulation of
weak magnetic elements, with both the continuum and CaIIK intensity
distributions shifted towards higher values with little change in shape from
their mid-latitude distributions. Since the enhancement is of low spatial
frequency and of very small amplitude it is difficult to separate from
systematic instrumental and processing errors. We provide a thorough discussion
of these and conclude that the measurement captures real solar latitudinal
intensity variations.Comment: 24 pages, 8 figs, accepted in Ap
Graduate Quantum Mechanics Reform
We address four main areas in which graduate quantum mechanics education can
be improved: course content, textbook, teaching methods, and assessment tools.
We report on a three year longitudinal study at the Colorado School of Mines
using innovations in all these areas. In particular, we have modified the
content of the course to reflect progress in the field in the last 50 years,
used textbooks that include such content, incorporated a variety of teaching
techniques based on physics education research, and used a variety of
assessment tools to study the effectiveness of these reforms. We present a new
assessment tool, the Graduate Quantum Mechanics Conceptual Survey, and further
testing of a previously developed assessment tool, the Quantum Mechanics
Conceptual Survey. We find that graduate students respond well to
research-based techniques that have been tested mainly in introductory courses,
and that they learn much of the new content introduced in each version of the
course. We also find that students' ability to answer conceptual questions
about graduate quantum mechanics is highly correlated with their ability to
solve calculational problems on the same topics. In contrast, we find that
students' understanding of basic undergraduate quantum mechanics concepts at
the modern physics level is not improved by instruction at the graduate level.Comment: accepted to American Journal of Physic
Temporal evolution of headwall erosion rates derived from cosmogenic nuclide concentrations in the medial moraines of Glacier d'Otemma, Switzerland
Climate change affects the stability and erosion of highâalpine rock walls above glaciers (headwalls) that deliver debris to glacier surfaces. Since supraglacial debris in the ablation zone alters the melt behaviour of the underlying ice, the responses of debrisâcovered glaciers and of headwalls to climate change may be coupled. In this study, we analyse the berylliumâ10 (10Be)âcosmogenic nuclide concentration history of glacial headwalls delivering debris to the Glacier d'Otemma in Switzerland. By systematic downglacierâprofileâsampling of two parallel medial moraines, we assess changes in headwall erosion through time for small, wellâdefined debris source areas. We compute apparent headwall erosion rates from 10Be concentrations ([10Be]), measured in 15 amalgamated medial moraine debris samples. To estimate both the additional 10Be production during glacial debris transport and the age of our samples we combine our fieldâbased data with a simple model that simulates downglacier debris trajectories. Furthermore, we evaluate additional grain size fractions for eight samples to test for stochastic mass wasting effects on [10Be]. Our results indicate that [10Be] along the medial moraines vary systematically with time and consistently for different grain sizes. [10Be] are higher for older debris, closer to the glacier terminus, and lower for younger debris, closer to the glacier head. Computed apparent headwall erosion rates vary between ~0.6 and 10.8Â mmâyrâ1, increasing over a maximum time span of ~200âyears towards the present. As ice cover retreats, newly exposed headwall surfaces may become susceptible to enhanced weathering and erosion, expand to lower elevations, and contribute formerly shielded bedrock of likely different [10Be]. Hence, we suggest that recently lower [10Be] reflect the deglaciation of the debris source areas since the end of the Little Ice Age
- âŠ