12 research outputs found

    Molecular basis of altered excitability in Shaker mutants of Drosophila melanogaster.

    Get PDF
    Mutations in the Shaker (Sh) locus of Drosophila melanogaster have differing effects on action potential duration and repolarization in neurons as well as on A-type K+ channels (I(A)) in muscle. The molecular basis of three exemplary Sh alleles (Sh(KS133), Sh(E62) and Sh5) has been identified. They are point mutation in the Sh transcription unit expressing aberrant voltage-gated A-type K+ channels. Replicas of each mutation have been introduced by in vitro mutagenesis into Sh cDNA. The expression of in vitro transcribed mutant Sh cRNA in Xenopus laevis oocytes reproduced the specific phenotypic traits of each Sh allele. The lack of I(A) in Sh(KS133) is due to a missense mutation within a sequence motif occurring in all hitherto characterized voltage-gated K+ channel forming proteins. The reduction of I(A) in Sh(E62) is due to a mutation in an AG acceptor site. The intervening sequence between exon 19 and 20 is not spliced in Sh(E62) RNA. As a consequence Sh(E62) flies do not contain the full complement of Sh K+ forming proteins. Finally, the Sh5 mutation leads to an altered voltage dependence of K+ channel activation and inactivation as well as to an accelerated rate of recovery from inactivation. This is due to a missense mutation altering the amino acid sequence of the proposed transmembrane segment S5 of the Sh K+ channels. Segment S5 is located adjacently to the presumed voltage sensor of voltage-gated ion channels. The results explain the altered properties of excitable cells in Sh mutants and provide a general model for the possible role of A-type K+ channels in modulation action potential profiles

    Alternative Shaker transcripts express either rapidly inactivating or noninactivating K+ channels.

    No full text
    Two members of the Shaker K+ channel family designated ShA2 and ShD2 were characterized in the Xenopus oocyte expression system. The predicted amino acid sequences of ShA2 and ShD2 differ only in the amino terminus, which is located intracellularly according to the present topological model of K+ channels. The differing amino termini have profound effects on the electrophysiological and pharmacological properties of the K+ channel. Most markedly, the nature of the amino terminus determines whether the K+ channel mediates rapidly inactivating or noninactivating K+ currents. It also affects the 4-aminopyridine, tetraethylammonium, and charybdotoxin sensitivities of the K+ channels. These results suggest that the amino terminus of Shaker proteins affects K+ channel structures on both sides of the membrane

    Alternative Shaker transcripts express either rapidly inactivating or noninactivating K+ channels

    No full text
    Two members of the Shaker K+ channel family designated ShA2 and ShD2 were characterized in the Xenopus oocyte expression system. The predicted amino acid sequences of ShA2 and ShD2 differ only in the amino terminus, which is located intracellularly according to the present topological model of K+ channels. The differing amino termini have profound effects on the electrophysiological and pharmacological properties of the K+ channel. Most markedly, the nature of the amino terminus determines whether the K+ channel mediates rapidly inactivating or noninactivating K+ currents. It also affects the 4-aminopyridine, tetraethylammonium, and charybdotoxin sensitivities of the K+ channels. These results suggest that the amino terminus of Shaker proteins affects K+ channel structures on both sides of the membrane.Peer Reviewe

    Beneficial biofilms in marine aquaculture? Linking points of biofilm formation mechanisms in <em>Pseudomonas aeruginosa</em> and <em>Pseudoalteromonas</em> species

    No full text

    Pflanzen- und Tierfette (ausgenommen Milchfette) Vorkommen, Gewinnung, Zusammensetzung, Eigenschaften, Verwendung

    No full text

    Referate

    No full text
    corecore