39 research outputs found

    A Reliability Study in a Cohort of 207 Apparently Healthy Participants

    Get PDF
    The reliability of single time point measurements of the novel adipokines retinol-binding protein 4 and omentin-1 in the blood has not been evaluated in large samples yet. The present study aimed to assess the amount of biological variation of these two adipokines within individuals. The study sample comprised 207 participants (124 women and 83 men) from Potsdam (Germany) and surrounding areas, with an average age of 56.5 years (SD 4.2). Blood samples were collected from each participant twice, approximately four months apart. Using enzyme linked immunosorbent assays, the concentrations of retinol- binding protein 4 and omentin-1 were determined in EDTA plasma. As indicators of reliability, intraclass correlation coefficients (ICCs) were calculated from the repeated biomarker measurements. The ICCs for repeated retinol- binding protein 4 and omentin-1 measurements were 0.77 (95% CI 0.71, 0.82) and 0.83 (95% CI 0.78, 0.87), respectively, indicating for both adipokines excellent reliability. ICCs were stable across strata according to sex, age, BMI, and blood pressure. Thus, for epidemiological studies it seems reasonable to rely on concentrations of retinol-binding protein 4 and omentin-1 in samples from a single time point if repeated measurements are not available

    Retinol and Retinol Binding Protein 4 Levels and Cardiometabolic Disease Risk

    Get PDF
    Background: Despite mechanistic studies linking retinol and RBP4 (retinol binding protein 4) to the pathogenesis of cardiovascular diseases (CVD) and type 2 diabetes (T2D), epidemiological evidence is still conflicting. We investigated whether conflicting results of previous studies may be explained by differences in the association of retinol and RBP4 with cardiometabolic risk across subgroups with distinct sex, hypertension state, liver, or kidney function. Methods: We used case-cohorts nested in the EPIC (European Prospective Investigation Into Cancer and Nutrition)-Potsdam cohort (N=27 548) comprising a random sample of participants (n=2500) and all physician-verified cases of incident CVD (n=508, median follow-up time 8.2 years) and T2D (n=820, median follow-up time 6.3 years). We estimated nonlinear and linear multivariable-adjusted associations between the biomarkers and cardiometabolic diseases by restricted cubic splines and Cox regression, respectively, testing potential interactions with hypertension, liver, and kidney function. Additionally, we performed 2-sample Mendelian Randomization analyses in publicly available data. Results: The association of retinol with cardiometabolic risk was modified by hypertension state (P interaction CVDP interaction T2D<0.001). Retinol was associated with lower cardiometabolic risk in participants with treated hypertension (hazard ratio(per SD) [95% CI]: CVD, 0.71 [0.56-0.90]; T2D, 0.81 [0.70-0.94]) but with higher cardiometabolic risk in normotensive participants (CVD, 1.32 [1.06-1.64]; T2D, 1.15 [0.98-1.36]). Our analyses also indicated a significant interaction between RBP4 and hypertension on CVD risk (P interaction=0.04). Regarding T2D risk, we observed a u-shaped association with RBP4 in women (P nonlinearity=0.01, P effect=0.02) and no statistically significant association in men. The biomarkers\u27 interactions with liver or kidney function were not statistically significant. Hypertension state-specific associations for retinol concentrations with cardiovascular mortality risk were replicated in National Health and Nutrition Examination Survey III. Conclusions: Our findings suggest a hypertension-dependent relationship between plasma retinol and cardiometabolic risk and complex interactions of RBP4 with sex and hypertension on cardiometabolic risk

    Plasma lipidome and risk of atrial fibrillation: results from the PREDIMED trial

    Get PDF
    The potential role of the lipidome in atrial fibrillation (AF) development is still widely unknown. We aimed to assess the association between lipidome profiles of the Prevenci\uf3n con Dieta Mediterr\ue1nea (PREDIMED) trial participants and incidence of AF. We conducted a nested case–control study (512 incident centrally adjudicated AF cases and 735 controls matched by age, sex, and center). Baseline plasma lipids were profiled using a Nexera X2 U-HPLC system coupled to an Exactive Plus orbitrap mass spectrometer. We estimated the association between 216 individual lipids and AF using multivariable conditional logistic regression and adjusted the p values for multiple testing. We also examined the joint association of lipid clusters with AF incidence. Hitherto, we estimated the lipidomics network, used machine learning to select important network-clusters and AF-predictive lipid patterns, and summarized the joint association of these lipid patterns weighted scores. Finally, we addressed the possible interaction by the randomized dietary intervention. Forty-one individual lipids were associated with AF at the nominal level (p < 0.05), but no longer after adjustment for multiple-testing. However, the network-based score identified with a robust data-driven lipid network showed a multivariable-adjusted ORper+1SD of 1.32 (95% confidence interval: 1.16–1.51; p < 0.001). The score included PC plasmalogens and PE plasmalogens, palmitoyl-EA, cholesterol, CE 16:0, PC 36:4;O, and TG 53:3. No interaction with the dietary intervention was found. A multilipid score, primarily made up of plasmalogens, was associated with an increased risk of AF. Future studies are needed to get further insights into the lipidome role on AF. Current Controlled Trials number, ISRCTN35739639

    Circulating Amino Acids and Risk of Peripheral Artery Disease in the PREDIMED Trial

    Get PDF
    Effective prevention and risk prediction are important for peripheral artery disease (PAD) due to its poor prognosis and the huge disease burden it produces. Circulating amino acids (AA) and their metabolites may serve as biomarkers of PAD risk, but they have been scarcely investigated. The objective was to prospectively analyze the associations of baseline levels of plasma AA (and their pathways) with subsequent risk of PAD and the potential effect modification by a nutritional intervention with the Mediterranean diet (MedDiet). A matched case-control study was nested in the PREDIMED trial, in which participants were randomized to three arms: MedDiet with tree nut supplementation group, MedDiet with extra-virgin olive oil (EVOO) supplementation group or control group (low-fat diet). One hundred and sixty-seven PAD cases were matched with 250 controls. Plasma AA was measured with liquid chromatography/mass spectrometry at the Broad Institute. Baseline tryptophan, serine and threonine were inversely associated with PAD (ORfor 1 SD increase = 0.78 (0.61–0.99); 0.67 (0.51–0.86) and 0.75 (0.59–0.95), respectively) in a multivariable-adjusted conditional logistic regression model. The kynurenine/tryptophan ratio was directly associated with PAD (ORfor 1 SD increase = 1.50 (1.14–1.98)). The nutritional intervention with the MedDiet+nuts modified the association between threonine and PAD (p-value interaction = 0.018) compared with the control group. However, subjects allocated to the MedDiet+EVOO group were protected against PAD independently of baseline threonine. Plasma tryptophan, kynurenine/tryptophan ratio, serine and threonine might serve as early biomarkers of future PAD in subjects at a high risk of cardiovascular disease. The MedDiet supplemented with EVOO exerted a protective effect, regardless of baseline levels of threonine

    Plasma lipidome and risk of atrial fibrillation: results from the PREDIMED trial

    Get PDF
    The potential role of the lipidome in atrial fibrillation (AF) development is still widely unknown. We aimed to assess the association between lipidome profiles of the Prevención con Dieta Mediterránea (PREDIMED) trial participants and incidence of AF. We conducted a nested case-control study (512 incident centrally adjudicated AF cases and 735 controls matched by age, sex, and center). Baseline plasma lipids were profiled using a Nexera X2 U-HPLC system coupled to an Exactive Plus orbitrap mass spectrometer. We estimated the association between 216 individual lipids and AF using multivariable conditional logistic regression and adjusted the p values for multiple testing. We also examined the joint association of lipid clusters with AF incidence. Hitherto, we estimated the lipidomics network, used machine learning to select important network-clusters and AF-predictive lipid patterns, and summarized the joint association of these lipid patterns weighted scores. Finally, we addressed the possible interaction by the randomized dietary intervention.Forty-one individual lipids were associated with AF at the nominal level (p < 0.05), but no longer after adjustment for multiple-testing. However, the network-based score identified with a robust data-driven lipid network showed a multivariable-adjusted ORper+1SD of 1.32 (95% confidence interval: 1.16-1.51; p < 0.001). The score included PC plasmalogens and PE plasmalogens, palmitoyl-EA, cholesterol, CE 16:0, PC 36:4;O, and TG 53:3. No interaction with the dietary intervention was found. A multilipid score, primarily made up of plasmalogens, was associated with an increased risk of AF. Future studies are needed to get further insights into the lipidome role on AF.Current Controlled Trials number, ISRCTN35739639

    Arginine catabolism metabolites and atrial fibrillation or heart failure risk: 2 case-control studies within the Prevención con Dieta Mediterránea (PREDIMED) trial

    Get PDF
    Background Arginine-derived metabolites are involved in oxidative and inflammatory processes related to endothelial functions and cardiovascular risks. Objectives We prospectively examined the associations of arginine catabolism metabolites with the risks of atrial fibrillation (AF) or heart failure (HF), and evaluated the potential modifications of these associations through Mediterranean diet (MedDiet) interventions in a large, primary-prevention trial. Methods Two nested, matched, case-control studies were designed within the Prevención con Dieta Mediterránea (PREDIMED) trial. We selected 509 incident cases and 547 matched controls for the AF case-control study and 326 cases and 402 matched controls for the HF case-control study using incidence density sampling. Fasting blood samples were collected at baseline and arginine catabolism metabolites were measured using LC-tandem MS. Multivariable conditional logistic regression models were applied to test the associations between the metabolites and incident AF or HF. Interactions between metabolites and intervention groups (MedDiet groups compared with control group) were analyzed with the likelihood ratio test. Results Inverse association with incident AF was observed for arginine (OR per 1 SD, 0.83; 95% CI: 0.73–0.94), whereas a positive association was found for N1-acetylspermidine (OR for Q4 compared with Q1 1.58; 95% CI: 1.13–2.25). For HF, inverse associations were found for arginine (OR per 1 SD, 0.82; 95% CI: 0.69–0.97) and homoarginine (OR per 1 SD, 0.81; 95% CI: 0.68–0.96), and positive associations were found for the asymmetric dimethylarginine (ADMA) and symmetric dimethlyarginine (SDMA) ratio (OR per 1 SD, 1.19; 95% CI: 1.02–1.41), N1-acetylspermidine (OR per 1 SD, 1.34; 95% CI: 1.12–1.60), and diacetylspermine (OR per 1 SD, 1.20; 95% CI: 1.02–1.41). In the stratified analysis according to the dietary intervention, the lower HF risk associated with arginine was restricted to participants in the MedDiet groups (P-interaction = 0.044). Conclusions Our results suggest that arginine catabolism metabolites could be involved in AF and HF. Interventions with the MedDiet may contribute to strengthen the inverse association between arginine and the risk of HF. This trial was registered at controlled-trials.com as ISRCTN35739639

    Desaturase Activity and the Risk of Type 2 Diabetes and Coronary Artery Disease: A Mendelian Randomization Study

    No full text
    Estimated Δ5-desaturase (D5D) and Δ6-desaturase (D6D) are key enzymes in metabolism of polyunsaturated fatty acids (PUFA) and have been associated with cardiometabolic risk; however, causality needs to be clarified. We applied two-sample Mendelian randomization (MR) approach using a representative sub-cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC)–Potsdam Study and public data from DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) and Coronary ARtery DIsease Genome wide Replication and Meta-analysis (CARDIoGRAM) genome-wide association studies (GWAS). Furthermore, we addressed confounding by linkage disequilibrium (LD) as all instruments from FADS1 (encoding D5D) are in LD with FADS2 (encoding D6D) variants. Our univariable MRs revealed risk-increasing total effects of both, D6D and D5D on type 2 diabetes (T2DM) risk; and risk-increasing total effect of D6D on risk of coronary artery disease (CAD). The multivariable MR approach could not unambiguously allocate a direct causal effect to either of the individual desaturases. Our results suggest that D6D is causally linked to cardiometabolic risk, which is likely due to downstream production of fatty acids and products resulting from high D6D activity. For D5D, we found indication for causal effects on T2DM and CAD, which could, however, still be confounded by LD

    Plasma Lipidomic n-6 Polyunsaturated Fatty Acids and Type 2 Diabetes Risk in the EPIC-Potsdam Prospective Cohort Study

    No full text
    OBJECTIVE: Evidence on plasma n-6 polyunsaturated fatty acids (PUFAs) and type 2 diabetes risk is inconsistent. We examined the associations of lipid class–specific PUFA concentrations with type 2 diabetes risk. RESEARCH DESIGN AND METHODS: In the prospective European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam cohort (nested case-cohort study: subcohort 1,084 participants, 536 participants with type 2 diabetes, median follow-up 6.5 years), we measured plasma 18:2, 20:3, and 20:4 concentrations in 12 lipid (sub)classes, likely reflecting the plasma concentrations of linoleic acid (18:2n-6), dihomo-γ-linolenic acid (20:3n-6), and arachidonic acid (20:4n-6). The Δ-5 desaturase (D5D) activity was estimated as the 20:4/20:3 ratio. Associations with diabetes were estimated with Cox proportional hazards models. RESULTS: Higher concentrations of 18:2 were inversely associated with type 2 diabetes risk, particularly in lysophosphatidylcholines (hazard ratio [HR] per 1 SD 0.53; 95% CI 0.23–1.26) and monoacylglycerols (HR 0.59; 0.38–0.92). Higher concentrations of 20:3 in phospholipid classes phosphatidylcholines (HR 1.63; 1.23–2.14), phosphatidylethanolamines (HR 1.87; 1.32–2.65), and phosphatidylinositol (HR 1.40; 1.05–1.87); free fatty acids (HR 1.44; 1.10–1.90); and cholesteryl esters (HR 1.47; 1.09–1.98) were linked to higher type 2 diabetes incidence, and these associations remained statistically significant after correction for multiple testing. Higher 20:4 concentrations were not associated with risk. The estimated D5D activity in phospholipids and cholesteryl esters was associated with lower type 2 diabetes risk. Single nucleotide polymorphisms in the D5D-encoding FADS genes explained relatively high proportions of variation of estimated D5D activity in those lipid classes. CONCLUSIONS: Plasma n-6 PUFAs were associated differently with type 2 diabetes, depending on fatty acid and the lipid class

    Association of the odd-chain fatty acid content in lipid groups with type 2 diabetes risk: A targeted analysis of lipidomics data in the EPIC-Potsdam cohort

    No full text
    BACKGROUND: Plasma odd-chain saturated fatty acids (OCFA) are inversely associated with type 2 diabetes (T2D) risk and may serve as biomarkers for dairy fat intake. Their distribution across different lipid classes and consequences for diabetes risk remain unknown. AIM: To investigate the prospective associations of OCFA-containing lipid species with T2D risk and their dietary determinants. METHODS: Within the European Prospective Investigation into Cancer and Nutrition–Potsdam study (n = 27,548), we applied a nested case-cohort design (subcohort: n = 1,248; T2D cases: n = 820; median follow-up 6.5 years). OCFA-containing lipids included triacylglycerols, free fatty acids (FFA), cholesteryl esters (CE), phosphatidylcholines, phosphatidylethanolamines, lysophosphatidylcholines, lysophosphatidylethanolamines, monoacylglycerols, and diacylglycerols. We estimated lipid class-specific associations between OCFA-containing lipids and T2D in sex-stratified Cox proportional-hazards models. We investigated correlations between lipids and dietary intakes derived from food-frequency questionnaires. RESULTS: We observed heterogeneous integration of OCFA in different lipid classes: triacylglycerols, FFA, CE, and phosphatidylcholines contributed most to the total OCFA-plasma abundance. The relative concentration of OCFA was particularly high in monoacylglycerols, and the contribution of C15:0 versus C17:0 to the total OCFA-abundance differed across lipid classes. In women, several OCFA-containing phospholipids were inversely associated with T2D risk [phosphatidylcholine(C15:0), HR Q5 vs Q1: 0.56, 95% CI 0.32–0.97; phosphatidylcholine(C17:0), HR per SD: 0.59, 95% CI 0.48–0.71; lysophosphatidylcholine(C17:0), HR Q5 vs Q1: 0.42, 95% CI 0.23–0.76]. In men, we did not detect statistically significant inverse associations in phospholipids, and lysophosphatidylcholine(C15:0) was associated with higher T2D risk (HR Q5 vs. Q1: 1.96, 95% CI 1.06–3.63). Besides, CE(C17:0), monoacylglycerols(C15:0), and diacylglycerols(C15:0) were inversely associated with T2D risk; FFA(C17:0) was positively associated with T2D risk in women. Consumption of fat-rich dairy and fiber-rich foods were positively and red meat inversely correlated to OCFA-containing lipid plasma levels. CONCLUSIONS: OCFA-containing lipids are linked to T2D risk in a lipid class and sex-specific manner, and they are correlated with several foods
    corecore