27 research outputs found

    Pelvic trauma : WSES classification and guidelines

    Get PDF
    Complex pelvic injuries are among the most dangerous and deadly trauma related lesions. Different classification systems exist, some are based on the mechanism of injury, some on anatomic patterns and some are focusing on the resulting instability requiring operative fixation. The optimal treatment strategy, however, should keep into consideration the hemodynamic status, the anatomic impairment of pelvic ring function and the associated injuries. The management of pelvic trauma patients aims definitively to restore the homeostasis and the normal physiopathology associated to the mechanical stability of the pelvic ring. Thus the management of pelvic trauma must be multidisciplinary and should be ultimately based on the physiology of the patient and the anatomy of the injury. This paper presents the World Society of Emergency Surgery (WSES) classification of pelvic trauma and the management Guidelines.Peer reviewe

    Pelvic trauma: WSES classification and guidelines

    Full text link

    Etude en laboratoire des performances de l'appareil DiSCmini pour la mesure des aérosols submicroniques

    No full text
    En plus de la composition chimique, la taille des particules et la concentration sont parmi les principaux paramĂštres utilisĂ©s pour caractĂ©riser l'exposition aux nanoparticules dispersĂ©es dans l'air. Pour Ă©valuer les expositions professionnelles, l'utilisation d’instruments de mesure en temps rĂ©el sont recommandĂ©s dans les stratĂ©gies rĂ©centes publiĂ©es. Parmi les dispositifs portables individuels permettant d’évaluer l'exposition aux aĂ©rosols de nanoparticules en milieu de travail, le DiSCmini (Matter Aerosol AG, Suisse) a Ă©tĂ© identifiĂ© comme un candidat potentiel. Cet appareil permet de mesurer la concentration de nanoparticules dans l'air et la taille moyenne des particules avec une bonne rĂ©solution temporelle. Des nanoaĂ©rosols de test monodispersĂ©s et polydispersĂ©s, de composition chimique et de morphologie variables, ont Ă©tĂ© produits en laboratoire en utilisant l'installation CAIMAN, couvrant une gamme de tailles de particules entre 15 et 400 nm et de concentration en nombre allant de 700 Ă  840 000 cm3. Les aĂ©rosols ont Ă©tĂ© utilisĂ©s pour Ă©tudier le comportement du DiSCmini en comparant les donnĂ©es expĂ©rimentales aux donnĂ©es de rĂ©fĂ©rence. MalgrĂ© une lĂ©gĂšre tendance Ă  sous-estimer la taille des particules, tous les diamĂštres de particules et concentrations en nombre mesurĂ©s ont Ă©tĂ© obtenus dans le mĂȘme ordre de grandeur que les donnĂ©es de rĂ©fĂ©rence

    Operation and performances of the CAIMAN facility for monoparticle aerosol generation.

    No full text
    The present report describes the nanoparticle generation facility in aerosol phase called "CAIMAN" (acronym of Characterization of Aerosol instrumentation devoted for Measuring Aerosols of Nanoparticles) and its performances that has been developed to produce well-defined nanoaerosols.Ce document dĂ©crit la conception et la caractĂ©risation d'un banc d’essais versatile (CAIMAN). Ce dispositif est capable de produire des nanoaĂ©rosols polydispersĂ©s ou monodispersĂ©s (1) de diffĂ©rentes natures chimiques (2) avec des diamĂštres de mobilitĂ© entre 15 et 500 nm (3) en concentration maĂźtrisĂ©e (4) avec des formes fractales ou sphĂ©riques et (5) de niveaux de charge Ă©lectrique variables. CAIMAN est constituĂ© d’un gĂ©nĂ©rateur de nanoaĂ©rosols, d’un gĂ©nĂ©rateur d’ions bipolaires, d’un four Ă  haute tempĂ©rature et d’un volume de vieillissement de 2 litres. CAIMAN peut ĂȘtre utilisĂ© pour diffĂ©rentes applications : Ă©tude des performances d’instruments pour la mesure d’exposition, production d’échantillons pour le dĂ©veloppement de protocoles analytiques, production d’aĂ©rosols pour l’étude des phĂ©nomĂšnes de coagulation, d’agrĂ©gation, de restructuration thermique, de toxicologie par inhalation

    Performance of personal inhalable aerosol samplers in very slowly moving air when facing the aerosol source

    No full text
    While personal aerosol samplers have been characterized primarily based on wind tunnel tests conducted at relatively high wind speeds, modern indoor occupational environments are usually represented by very slow moving air. Recent surveys suggest that elevated levels of occupational exposure to inhalable airborne particles are typically observed when the worker, operating in the vicinity of the dust source, faces the source. Thus, the first objective of this study was to design and test a new, low cost experimental protocol for measuring the sampling efficiency of personal inhalable aerosol samplers in the vicinity of the aerosol source when the samplers operate in very slowly moving air. In this system, an aerosol generator, which is located in the centre of a room-sized non-ventilated chamber, continuously rotates and omnidirectionally disperses test particles of a specific size. The test and reference samplers are equally distributed around the source at the same distance from the centre and operate in parallel (in most of our experiments, the total number of simultaneously operating samplers was 15). Radial aerosol transport is driven by turbulent diffusion and some natural convection. For each specific particle size and the sampler, the aerosol mass concentration is measured by weighing the collection filter. The second objective was to utilize the new protocol to evaluate three widely used aerosol samplers: the IOM Personal Inhalable Sampler, the Button Personal Inhalable Aerosol Sampler and the 25 mm Millipore filter holder (closed-face C25 cassette). The sampling efficiencies of each instrument were measured with six particle fractions, ranging from 6.9 to 76.9 ÎŒm in their mass median aerodynamic diameter. The Button Sampler efficiency data demonstrated a good agreement with the standard inhalable convention and especially with the low air movement inhalabilty curve. The 25 mm filter holder was found to considerably under-sample the particles larger than 10 ÎŒm; its efficiency did not exceed 7% for particles of 40-100 ÎŒm. The IOM Sampler facing the source was found to over-sample compared with the data obtained previously with a slowly rotating, freely suspended sampler in a low air movement environment. It was also found that the particle wall deposition in the IOM metallic cartridge was rather significant and particle size-dependent. For each sampler (IOM, Button and C25) the precision was characterized through the relative standard deviation (RSD) of the aerosol concentration obtained with identical samplers in a specific experiment. The average RSD was 14% for the IOM Sampler, 11% for the Button Sampler and 35% for the 25 mm filter cassette. A separate set of experiments, performed with the Simplified Torso showed that in very slowly moving air a personal sampler can be adequately evaluated even when it is not attached to a body but freely suspended (confirming the data reported previously)
    corecore