285 research outputs found

    Hemodialysis Affects Phenotype and Proliferation of CD4-Positive T Lymphocytes

    Get PDF
    CD4+ T lymphocytes of patients with chronic kidney disease (CKD) are characterized by reduced levels of crucial surface antigens and changes in the cell cycle parameters. Recombinant human erythropoietin (rhEPO) normalizes their altered phenotype and proliferative capacity. Mechanisms leading to the deficient responses of T lymphocytes are still not clear but it is postulated that immunological changes are deepened by hemodialysis (HD). Study of activation parameters of CD4+ T lymphocytes in hemodialyzed and predialysis CKD patients could bring insight into this problem. Two groups of patients, treated conservatively (predialysis, PD) and hemodialyzed (HD), as well as healthy controls, were included into the study; neither had received rhEPO. Proportions of main CD4+CD28+, CD4+CD25+, CD4+CD69+, CD4+CD95+, and CD4+HLA-DR+ lymphocyte subpopulations and proliferation kinetic parameters were measured with flow cytometry, both ex vivo and in vitro. No differences were seen in the proportions of main CD4+ lymphocyte subpopulations (CD4+CD28+, CD4+CD25+, CD4+HLA-DR+, CD4+CD69+, CD4+CD95+) between all examined groups ex vivo. CD4+ T lymphocytes of HD patients exhibited significantly decreased expression of co-stimulatory molecule CD28 and activation markers CD25 and CD69 after stimulation in vitro when compared with PD patients and healthy controls. HD patients showed also decreased percentage of CD4+CD28+ lymphocytes proliferating in vitro; these cells presented decreased numbers of finished divisions after 72 h of stimulation in vitro and had longer G0→G1 time when compared to healthy controls. CD4+ T lymphocytes of PD patients and healthy controls were characterized by similar cell cycle parameters. Our study shows that repeated hemodialysis procedure influences phenotype and proliferation parameters of CD4+ T lymphocytes

    Expression of calpain-calpastatin system (CCS) member proteins in human lymphocytes of young and elderly individuals; pilot baseline data for the CALPACENT project.

    Get PDF
    Ubiquitous system of regulatory, calcium-dependent, cytoplasmic proteases – calpains – and their endogenous inhibitor – calpastatin – is implicated in the proteolytic regulation of activation, proliferation, and apoptosis of many cell types. However, it has not been thoroughly studied in resting and activated human lymphocytes yet, especially in relation to the subjects’ ageing process. The CALPACENT project is an international (Polish-Italian) project aiming at verifying the hypothesis of the role of calpains in the function of peripheral blood immune cells of Polish (Pomeranian) and Italian (Sicilian) centenarians, apparently relatively preserved in comparison to the general elderly population. In this preliminary report we aimed at establishing and comparing the baseline levels of expression of μ- and m-calpain and calpastatin in various, phenotypically defined, populations of human peripheral blood lymphocytes for healthy elderly Sicilians and Poles, as compared to these values observed in young cohort

    T cells in aging mice: genetic, developmental, and biochemical analyses

    Full text link
    A combination of approaches – gene mapping, biomarker analysis, and studies of signal transduction – has helped to clarify the mechanisms of age-related change in mouse immune status and the implications of immune aging for late-life disease. Mapping studies have documented multiple quantitative trait loci (QTL) that influence the levels of age-sensitive T-cell subsets. Some of these QTL have effects that are demonstrable in young-adult mice (8 months of age) and others demonstrable only in middle-aged mice (18 months). Biomarker studies show that T-cell subset levels measured at 8 or 18 months are significant predictors of lifespan for mice dying of lymphoma, fibrosarcoma, mammary adenocarcinoma, or all causes combined. Mice whose immune systems resemble that of young animals, i.e. with low levels of CD4 + and CD8 + memory T cells and relatively high levels of CD4 + T cells, tend to outlive their siblings with the opposite subset pattern. Biochemical analyses show that T cells from aged mice show defects in the activation process within a few minutes of encountering a stimulus and that the defects precede the recognition by the T-cell receptor of agonist peptides on the antigen-presenting cell. Defective assembly of cytoskeletal fibers and hyperglycosylation of T-cell surface glycoproteins contribute to the immunodeficiency state, and indeed treatment with a sialylglycoprotein endopeptidase can restore full function to CD4 + T cells from aged donors in vitro .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75195/1/j.0105-2896.2005.00254.x.pd

    Incorporating psychology into cyber security education: A pedagogical approach

    Get PDF
    The role of the human in cyber security is well acknowledged. Many cyber security incidents rely upon targets performing specific behavioural actions, such as opening a link within a phishing email. Cyber adversaries themselves are driven by psychological processes such as motivation, group dynamics and social identity. Furthermore, both intentional and unintentional insider threats are associated with a range of psychological factors, including cognitive load, mental wellbeing, trust and interpersonal relations. By incorporating psychology into cyber security education, practitioners will be better equipped with the skills they need to address cyber security issues. However, there are challenges in doing so. Psychology is a broad discipline, and many theories, approaches and methods may have little practical significance to cyber security. There is a need to sift through the literature to identify what can be applied to cyber security. There are also pedagogical differences in how psychology and cyber security are taught and also psychological differences in the types of student that may typically study psychology and cyber security. To engage with cyber security students, it is important that these differences are identified and positively addressed. Essential to this endeavor is the need to discuss and collaborate across the two disciplines. In this paper, we explore these issues and discuss our experiences as psychology and cyber security academics who work across disciplines to deliver psychology education to cyber security students, practitioners and commercial clients

    Beta-Amyloid Peptides Enhance the Proliferative Response of Activated CD4+CD28+ Lymphocytes from Alzheimer Disease Patients and from Healthy Elderly

    Get PDF
    Alzheimer's disease (AD) is the most frequent form of dementia among elderly. Despite the vast amount of literature on non-specific immune mechanisms in AD there is still little information about the potential antigen-specific immune response in this pathology. It is known that early stages of AD include β-amyloid (Aβ)- reactive antibodies production and inflammatory response. Despite some evidence gathered proving cellular immune response background in AD pathology, the specific reactions of CD4+ and CD8+ cells remain unknown as the previous investigations yielded conflicting results. Here we investigated the CD4+CD28+ population of human peripheral blood T cells and showed that soluble β-amyloids alone were unable to stimulate these cells to proliferate significantly, resulting only in minor, probably antigen-specific, proliferative response. On the other hand, the exposure of in vitro pre-stimulated lymphocytes to soluble Aβ peptides significantly enhanced the proliferative response of these cells which had also lead to increased levels of TNF, IL-10 and IL-6. We also proved that Aβ peptide-enhanced proliferative response of CD4+CD28+ cells is autonomous and independent from disease status while being associated with the initial, ex vivo activation status of the CD4+ cells. In conclusion, we suggest that the effect of Aβ peptides on the immune system of AD patients does not depend on the specific reactivity to Aβ epitope(s), but is rather a consequence of an unspecific modulation of the cell cycle dynamics and cytokine production by T cells, occurring simultaneously in a huge proportion of Aβ peptide-exposed T lymphocytes and affecting the immune system performance

    Patients with chronic fatigue syndrome performed worse than controls in a controlled repeated exercise study despite a normal oxidative phosphorylation capacity

    Get PDF
    Background: The aim of this study was to investigate the possibility that a decreased mitochondrial ATP synthesis causes muscular and mental fatigue and plays a role in the pathophysiology of the chronic fatigue syndrome (CFS/ME).Methods: Female patients (n = 15) and controls (n = 15) performed a cardiopulmonary exercise test (CPET) by cycling at a continuously increased work rate till maximal exertion. The CPET was repeated 24 h later. Before the tests, blood was taken for the isolation of peripheral blood mononuclear cells (PBMC), which were processed in a special way to preserve their oxidative phosphorylation, which was tested later in the presence of ADP and phosphate in permeabilized cells with glutamate, malate and malonate plus or minus the complex I inhibitor rotenone, and succinate with rotenone plus or minus the complex II inhibitor malonate in order to measure the ATP production via Complex I and II, respectively. Plasma CK was determined as a surrogate measure of a decreased oxidative phosphorylation in muscle, since the previous finding that in a group of patients with external ophthalmoplegia the oxygen consumption by isolated muscle mitochondria correlated negatively with plasma creatine kinase, 24 h after exercise.Results: At both exercise tests the patients reached the anaerobic threshold and the maximal exercise at a much lower oxygen consumption than the controls and this worsened in the second test. This implies an increase of lactate, the product of anaerobic glycolysis, and a decrease of the mitochondrial ATP production in the patients. In the past this was also found in patients with defects in the mitochondrial oxidative phosphorylation. However the oxidative phosphorylation in PBMC was similar in CFS/ME patients and controls. The plasma creatine kinase levels before and 24 h after exercise were low in patients and controls, suggesting normality of the muscular mitochondrial oxidative phosphorylation.Conclusion: The decrease in mitochondrial ATP synthesis in the CFS/ME patients is not caused by a defect in the enzyme complexes catalyzing oxidative phosphorylation, but in another factor

    Varespladib and cardiovascular events in patients with an acute coronary syndrome: the VISTA-16 randomized clinical trial

    Get PDF
    IMPORTANCE: Secretory phospholipase A2(sPLA2) generates bioactive phospholipid products implicated in atherosclerosis. The sPLA2inhibitor varespladib has favorable effects on lipid and inflammatory markers; however, its effect on cardiovascular outcomes is unknown. OBJECTIVE: To determine the effects of sPLA2inhibition with varespladib on cardiovascular outcomes. DESIGN, SETTING, AND PARTICIPANTS: A double-blind, randomized, multicenter trial at 362 academic and community hospitals in Europe, Australia, New Zealand, India, and North America of 5145 patients randomized within 96 hours of presentation of an acute coronary syndrome (ACS) to either varespladib (n = 2572) or placebo (n = 2573) with enrollment between June 1, 2010, and March 7, 2012 (study termination on March 9, 2012). INTERVENTIONS: Participants were randomized to receive varespladib (500 mg) or placebo daily for 16 weeks, in addition to atorvastatin and other established therapies. MAIN OUTCOMES AND MEASURES: The primary efficacy measurewas a composite of cardiovascular mortality, nonfatal myocardial infarction (MI), nonfatal stroke, or unstable angina with evidence of ischemia requiring hospitalization at 16 weeks. Six-month survival status was also evaluated. RESULTS: At a prespecified interim analysis, including 212 primary end point events, the independent data and safety monitoring board recommended termination of the trial for futility and possible harm. The primary end point occurred in 136 patients (6.1%) treated with varespladib compared with 109 patients (5.1%) treated with placebo (hazard ratio [HR], 1.25; 95%CI, 0.97-1.61; log-rank P = .08). Varespladib was associated with a greater risk of MI (78 [3.4%] vs 47 [2.2%]; HR, 1.66; 95%CI, 1.16-2.39; log-rank P = .005). The composite secondary end point of cardiovascular mortality, MI, and stroke was observed in 107 patients (4.6%) in the varespladib group and 79 patients (3.8%) in the placebo group (HR, 1.36; 95% CI, 1.02-1.82; P = .04). CONCLUSIONS AND RELEVANCE: In patients with recent ACS, varespladib did not reduce the risk of recurrent cardiovascular events and significantly increased the risk of MI. The sPLA2inhibition with varespladib may be harmful and is not a useful strategy to reduce adverse cardiovascular outcomes after ACS. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT01130246. Copyright 2014 American Medical Association. All rights reserved

    Honokiol Induces Calpain-Mediated Glucose-Regulated Protein-94 Cleavage and Apoptosis in Human Gastric Cancer Cells and Reduces Tumor Growth

    Get PDF
    Background. Honokiol, a small molecular weight natural product, has been shown to possess potent anti-neoplastic and anti-angiogenic properties. Its molecular mechanisms and the ability of anti-gastric cancer remain unknown. It has been shown that the anti-apoptotic function of the glucose-regulated proteins (GRPs) predicts that their induction in neoplastic cells can lead to cancer progression and drug resistance. We explored the effects of honokiol on the regulation of GRPs and apoptosis in human gastric cancer cells and tumor growth. Methodology and Principal Findings. Treatment of various human gastric cancer cells with honokiol led to the induction of GRP94 cleavage, but did not affect GRP78. Silencing of GRP94 by small interfering RNA (siRNA) could induce cell apoptosis. Treatment of cells with honokiol or chemotherapeutics agent etoposide enhanced the increase in apoptosis and GRP94 degradation. The calpain activity and calpain-II (m-calpain) protein (but not calpain-I (mu-calpain)) level could also be increased by honokiol. Honokiol-induced GRP94 down-regulation and apoptosis in gastric cancer cells could be reversed by siRNA targeting calpain-II and calpain inhibitors. Furthermore, the results of immunofluorescence staining and immunoprecipitation revealed a specific interaction of GRP94 with calpain-II in cells following honokiol treatment. We next observed that tumor GRP94 over-expression and tumor growth in BALB/c nude mice, which were inoculated with human gastric cancer cells MKN45, are markedly decreased by honokiol treatment. Conclusions and Significance. These results provide the first evidence that honokiol-induced calpain-II-mediated GRP94 cleavage causes human gastric cancer cell apoptosis. We further suggest that honokiol may be a possible therapeutic agent to improve clinical outcome of gastric cancer

    Exclusive Photoproduction of the Cascade (Xi) Hyperons

    Full text link
    We report on the first measurement of exclusive Xi-(1321) hyperon photoproduction in gamma p --> K+ K+ Xi- for 3.2 < E(gamma) < 3.9 GeV. The final state is identified by the missing mass in p(gamma,K+ K+)X measured with the CLAS detector at Jefferson Laboratory. We have detected a significant number of the ground-state Xi-(1321)1/2+, and have estimated the total cross section for its production. We have also observed the first excited state Xi-(1530)3/2+. Photoproduction provides a copious source of Xi's. We discuss the possibilities of a search for the recently proposed Xi5-- and Xi5+ pentaquarks.Comment: submitted to Phys. Rev.
    corecore