39 research outputs found

    Neurophysiological oscillatory markers of hypoalgesia in conditioned pain modulation

    Get PDF
    Introduction:Conditioned pain modulation (CPM) is an experimental procedure that consists of an ongoing noxious stimulus attenuating the pain perception caused by another noxious stimulus. A combination of the CPM paradigm with concurrent electrophysiological recordings can establish whether an association exists between experimentally modified pain perception and modulations of neural oscillations.Objectives:We aimed to characterize how CPM modifies pain perception and underlying neural oscillations. We also interrogated whether these perceptual and/or neurophysiological effects are distinct in patients affected by chronic pain.Methods:We presented noxious electrical stimuli to the right ankle before, during, and after CPM induced by an ice pack placed on the left forearm. Seventeen patients with chronic pain and 17 control participants rated the electrical pain in each experimental condition. We used magnetoencephalography to examine the anatomy-specific effects of CPM on the neural oscillatory responses to the electrical pain.Results:Regardless of the participant groups, CPM induced a reduction in subjective pain ratings and neural responses (beta-band [15-35 Hz] oscillations in the sensorimotor cortex) to electrical pain.Conclusion:Our findings of pain-induced beta-band activity may be associated with top-down modulations of pain, as reported in other perceptual modalities. Therefore, the reduced beta-band responses during CPM may indicate changes in top-down pain modulations.</p

    Magnetoencephalography reveals increased slow-to-fast alpha power ratios in patients with chronic pain

    Get PDF
    INTRODUCTION: Objective disease markers are a key for diagnosis and personalized interventions. In chronic pain, such markers are still not available, and therapy relies on individual patients' reports. However, several pain studies have reported group-based differences in functional magnetic resonance imaging, electroencephalography, and magnetoencephalography (MEG). OBJECTIVES: We aimed to explore spectral differences in resting-state MEG brain signals between patients with chronic pain and pain-free controls and to characterize the cortical and subcortical regions involved. METHODS: We estimated power spectral density over 5 minutes of resting-state MEG recordings in patients with chronic pain and controls and derived 7 spectral features at the sensor and source levels: alpha peak frequency, alpha power ratio (power 7–9 Hz divided by power 9–11 Hz), and average power in theta, alpha, beta, low-gamma, and high-gamma bands. We performed nonparametric permutation t tests (false discovery rate corrected) to assess between-group differences in these 7 spectral features. RESULTS: Twenty-one patients with chronic pain and 25 controls were included. No significant group differences were found in alpha peak frequency or average power in any frequency band. The alpha power ratio was significantly higher (P < 0.05) in patients with chronic pain at both the sensor and brain source levels. The brain regions showing significantly higher ratios included the occipital, parietal, temporal and frontal lobe areas, insular and cingulate cortex, and right thalamus. CONCLUSION: The alpha power ratio is a simple, promising signal marker of chronic pain, affecting an expansive range of cortical and subcortical regions, including known pain-processing areas

    Heterogeneous Cortical Effects of Spinal Cord Stimulation

    Get PDF
    Objectives: The understanding of the cortical effects of spinal cord stimulation (SCS) remains limited. Multiple studies have investigated the effects of SCS in resting-state electroencephalography. However, owing to the large variation in reported outcomes, we aimed to describe the differential cortical responses between two types of SCS and between responders and nonresponders using magnetoencephalography (MEG). Materials and Methods: We conducted 5-minute resting-state MEG recordings in 25 patients with chronic pain with active SCS in three sessions, each after a one-week exposure to tonic, burst, or sham SCS. We extracted six spectral features from the measured neurophysiological signals: the alpha peak frequency; alpha power ratio (power 7–9 Hz/power 9–11 Hz); and average power in the theta (4–7.5 Hz), alpha (8–12.5 Hz), beta (13–30 Hz), and low-gamma (30.5–60 Hz) frequency bands. We compared these features (using nonparametric permutation t-tests) for MEG sensor and cortical map effects across stimulation paradigms, between participants who reported low (&lt; 5, responders) vs high (≥ 5, nonresponders) pain scores, and in three representative participants. Results: We found statistically significant (p &lt; 0.05, false discovery rate corrected) increased MEG sensor signal power below 3 Hz in response to burst SCS compared with tonic and sham SCS. We did not find statistically significant differences (all p &gt; 0.05) between the power spectra of responders and nonresponders. Our data did not show statistically significant differences in the spectral features of interest among the three stimulation paradigms or between responders and nonresponders. These results were confirmed by the MEG cortical maps. However, we did identify certain trends in the MEG source maps for all comparisons and several features, with substantial variation across participants. Conclusions: The considerable variation in cortical responses to the various SCS treatment options necessitates studies with sample sizes larger than commonly reported in the field and more personalized treatment plans. Studies with a finer stratification between responders and nonresponders are required to advance the knowledge on SCS treatment effects.</p

    Optimisation of three-dimensional lower jaw resection margin planning using a novel Black Bone magnetic resonance imaging protocol

    Get PDF
    Background MRI is the optimal method for sensitive detection of tumour tissue and pre-operative staging in oral cancer. When jawbone resections are necessary, the current standard of care for oral tumour surgery in our hospital is 3D virtual planning from CT data. 3D printed jawbone cutting guides are designed from the CT data. The tumour margins are difficult to visualise on CT, whereas they are clearly visible on MRI scans. The aim of this study was to change the conventional CT-based workflow by developing a method for 3D MRI-based lower jaw models. The MRI-based visualisation of the tumour aids in planning bone resection margins. Materials and findings A workflow for MRI-based 3D surgical planning with bone cutting guides was developed using a four-step approach. Key MRI parameters were defined (phase 1), followed by an application of selected Black Bone MRI sequences on healthy volunteers (phase 2). Three Black Bone MRI sequences were chosen for phase 3: standard, fat saturated, and an out of phase sequence. These protocols were validated by applying them on patients (n = 10) and comparison to corresponding CT data. The mean deviation values between the MRI-and the CT-based models were 0.63, 0.59 and 0.80 mm for the three evaluated Black Bone MRI sequences. Phase 4 entailed examination of the clinical value during surgery, using excellently fitting printed bone cutting guides designed from MRI-based lower jaw models, in two patients with oral cancer. The mean deviation of the resection planes was 2.3 mm, 3.8 mm for the fibula segments, and the mean axis deviation was the fibula segments of 1.9 E. Conclusions This study offers a method for 3D virtual resection planning and surgery using cutting guides based solely on MRI imaging. Therefore, no additional CT data are required for 3D virtual planning in oral cancer surgery

    Contralateral Regional Recurrence in Lateralized or Paramedian Early-Stage Oral Cancer Undergoing Sentinel Lymph Node Biopsy-Comparison to a Historic Elective Neck Dissection Cohort

    Get PDF
    Introduction: Nowadays, two strategies are available for the management of the clinically negative neck in early-stage (cT1-2N0) oral squamous cell carcinoma (OSCC): elective neck dissection (END) and sentinel lymph node biopsy (SLNB). SLNB stages both the ipsilateral and the contralateral neck in early-stage OSCC patients, whereas the contralateral neck is generally not addressed by END in early-stage OSCC not involving the midline. This study compares both incidence and hazard of contralateral regional recurrences (CRR) in those patients who underwent END or SLNB. Materials and Methods: A retrospective multicenter cohort study, including 816 lateralized or paramedian early-stage OSCC patients, staged by either unilateral or bilateral END (n = 365) or SLNB (n = 451). Results: The overall rate of occult contralateral nodal metastasis was 3.7% (30/816); the incidence of CRR was 2.5% (20/816). Patients who underwent END developed CRR during follow-up more often than those who underwent SLNB (3.8 vs. 1.3%; p = 0.018). Moreover, END patients had a higher hazard for developing CRR than SLNB patients (HR = 2.585; p = 0.030). In addition, tumor depth of invasion was predictive for developing CRR (HR = 1.922; p = 0.009). Five-year disease-specific survival in patients with CRR was poor (42%) compared to patients in whom occult contralateral nodal metastases were detected by SLNB or bilateral END (88%), although not statistically different (p = 0.066). Conclusion: Our data suggest that SLNB allows for better control of the contralateral clinically negative neck in patients with lateralized or paramedian early-stage OSCC, compared to END as performed in a clinical setting. The prognosis of those in whom occult contralateral nodal metastases are detected at an earlier stage may be favorable compared to those who eventually develop CRR, which highlights the importance of adequate staging of the contralateral clinically negative neck

    Functional Swallowing Units (FSUs) as organs-at-risk for radiotherapy. PART 2:Advanced delineation guidelines for FSUs

    Get PDF
    Background and purpose: In a separate article (PART 1), a rationale and explanation of the physiology-and-anatomy-based concept of Functional Swallowing Units (FSUs) was presented. FSUs are swallowing muscles not included in the set of commonly defined swallowing organs at risk (SWOARs). They are involved in three crucial swallowing components: hyolaryngeal elevation (HLE), tongue base retraction (TBR) and tongue motion. This paper is a continuation of PART 1 and it provides detailed computed tomography (CT)-based delineation guidelines for FSUs, which presumably are also at risk of radiationinduced dysphagia. Material and methods: Following analysis of swallowing physiology and human anatomy, presented in PART 1, CT-based delineation guidelines for defined FSUs were created. Delineation was performed by the first author and revised by a panel of experts. Results and conclusions: Detailed delineation guidelines are presented for seven FSUs involved in HLE, TBR and tongue motion. The guidelines are supplemented by CT and MRI-based exemplary illustrations and complete CT/MRI-based delineation atlases (available online). This paper provides information essential to the implementation of the FSU concept in radiation practice, and supports uniform contouring, data collection and further improvement of swallowing sparing radiation-based strategies. (C) 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Intestinal Ralstonia pickettii augments glucose intolerance in obesity

    Get PDF
    An altered intestinal microbiota composition has been implicated in the pathogenesis of metabolic disease including obesity and type 2 diabetes mellitus (T2DM). Low grade inflammation, potentially initiated by the intestinal microbiota, has been suggested to be a driving force in the development of insulin resistance in obesity. Here, we report that bacterial DNA is present in mesenteric adipose tissue of obese but otherwise healthy human subjects. Pyrosequencing of bacterial 16S rRNA genes revealed that DNA from the Gram-negative species Ralstonia was most prevalent. Interestingly, fecal abundance of Ralstonia pickettii was increased in obese subjects with pre-diabetes and T2DM. To assess if R. pickettii was causally involved in development of obesity and T2DM, we performed a proof-of-concept study in diet-induced obese (DIO) mice. Compared to vehicle-treated control mice, R. pickettii-treated DIO mice had reduced glucose tolerance. In addition, circulating levels of endotoxin were increased in R. pickettii-treated mice. In conclusion, this study suggests that intestinal Ralstonia is increased in obese human subjects with T2DM and reciprocally worsens glucose tolerance in DIO mice.Peer reviewe
    corecore