634 research outputs found

    Tendency of spherically imploding plasma liners formed by merging plasma jets to evolve toward spherical symmetry

    Full text link
    Three dimensional hydrodynamic simulations have been performed using smoothed particle hydrodynamics (SPH) in order to study the effects of discrete jets on the processes of plasma liner formation, implosion on vacuum, and expansion. The pressure history of the inner portion of the liner was qualitatively and quantitatively similar from peak compression through the complete stagnation of the liner among simulation results from two one dimensional radiationhydrodynamic codes, 3D SPH with a uniform liner, and 3D SPH with 30 discrete plasma jets. Two dimensional slices of the pressure show that the discrete jet SPH case evolves towards a profile that is almost indistinguishable from the SPH case with a uniform liner, showing that non-uniformities due to discrete jets are smeared out by late stages of the implosion. Liner formation and implosion on vacuum was also shown to be robust to Rayleigh-Taylor instability growth. Interparticle mixing for a liner imploding on vacuum was investigated. The mixing rate was very small until after peak compression for the 30 jet simulation.Comment: 28 pages, 16 figures, submitted to Physics of Plasmas (2012

    Cohomology of finite dimensional pointed Hopf algebras

    Full text link
    We prove finite generation of the cohomology ring of any finite dimensional pointed Hopf algebra, having abelian group of grouplike elements, under some mild restrictions on the group order. The proof uses the recent classification by Andruskiewitsch and Schneider of such Hopf algebras. Examples include all of Lusztig's small quantum groups, whose cohomology was first computed explicitly by Ginzburg and Kumar, as well as many new pointed Hopf algebras. We also show that in general the cohomology ring of a Hopf algebra in a braided category is braided commutative. As a consequence we obtain some further information about the structure of the cohomology ring of a finite dimensional pointed Hopf algebra and its related Nichols algebra.Comment: 36 pages, references adde

    Graded Hecke algebras for disconnected reductive groups

    Get PDF
    We introduce graded Hecke algebras H based on a (possibly disconnected) complex reductive group G and a cuspidal local system L on a unipotent orbit of a Levi subgroup M of G. These generalize the graded Hecke algebras defined and investigated by Lusztig for connected G. We develop the representation theory of the algebras H. obtaining complete and canonical parametrizations of the irreducible, the irreducible tempered and the discrete series representations. All the modules are constructed in terms of perverse sheaves and equivariant homology, relying on work of Lusztig. The parameters come directly from the data (G,M,L) and they are closely related to Langlands parameters. Our main motivation for considering these graded Hecke algebras is that the space of irreducible H-representations is canonically in bijection with a certain set of "logarithms" of enhanced L-parameters. Therefore we expect these algebras to play a role in the local Langlands program. We will make their relation with the local Langlands correspondence, which goes via affine Hecke algebras, precise in a sequel to this paper.Comment: Theorem 3.4 and Proposition 3.22 in version 1 were not entirely correct as stated. This is repaired in a new appendi
    • …
    corecore